Bài 1 trang 100-SGK Giải tích 12: Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số còn lại?
a) \(e^{-x}\) và \(- e^{-x}\); b) \(sin2x\) và \(sin^2x\)
c) \((1-\frac{2}{x})^{2}e^{x}\) và \((1-\frac{4}{x})e^{x}\)
a) \(e^{-x}\) và \(- e^{-x}\) là nguyên hàm của nhau, vì:
\(({e^{ – x}})’= {e^{ – x}}\left( { – 1} \right)= – {e^{ – x}}\) và \(( – {e^{ – x}})’ = \left( { – 1} \right)( – {e^{ – x}}) = {e^{ – x}}\)
b) \(sin^2x\) là nguyên hàm của \(sin2x\), vì:
\(\left( {si{n^2}x} \right)'{\rm{ }} = {\rm{ }}2sinx.\left( {sinx} \right)’ = 2sinxcosx = sin2x\)
c) \((1-\frac{4}{x})e^{x}\) là một nguyên hàm của \((1-\frac{2}{x})^{2}e^{x}\) vì:
\(({(1-\frac{4}{x})e^{x})}’\) = \(\frac{4}{x^{2}}e^{x}+(1-\frac{4}{x})e^{x}\) = \(\left (1-\frac{4}{x}+\frac{4}{x^{2}} \right )e^{x}\) = \((1-\frac{2}{x})^{2}e^{x}\)
Bài 2 trang 100-101-SGK Giải tích 12: Tìm nguyên hàm của các hàm số sau?
a) \(f(x) = \frac{x+\sqrt{x}+1}{^{\sqrt[3]{x}}}\) ; b) \( f(x)=\frac{2^{x}-1}{e^{x}}\)
c) \(f(x) = \frac{1}{sin^{2}x.cos^{2}x}\); d) \(f(x) = sin5x.cos3x\)
e) \(f(x) = tan^2x\) g) \(f(x) = e^{3-2x}\)
h) \(f(x) =\frac{1}{(1+x)(1-2x)}\) ;
a) Điều kiện \(x>0\). Thực hiện chia tử cho mẫu ta được:
\(f(x) = \frac{x+x^{\frac{1}{2}}+1}{x^{\frac{1}{3}}}\) = \(x^{1-\frac{1}{3}}+ x^{\frac{1}{2}-\frac{1}{3}}+ x^{-\frac{1}{3}}\) = \(x^{\frac{2}{3}}+ x^{\frac{1}{6}} + x^{-\frac{1}{3}}\)
\(∫f(x)dx = ∫(x^{\frac{2}{3}}+ x^{\frac{1}{6}} + x^{-\frac{1}{3}})dx\) = \(\frac{3}{5}x^{\frac{5}{3}}+ \frac{6}{7}x^{\frac{7}{6}}+\frac{3}{2}x^{\frac{2}{3}}\) +C
b) Ta có \(f(x) = \frac{2^{x}-1}{e^{x}}\) = \((\frac{2}{e})^{x}\)\(-e^{-x}\)
; do đó nguyên hàm của \(f(x)\) là:
\(F(x)= \frac{(\frac{2}{e})^{x}}{ln\frac{2}{e}} + e^{-x}+C\) =\(\frac{2^{x}}{e^{x}(ln2 -1)}+\frac{1}{e^{x}}+C\)= \(\frac{2^{x}+ln2-1}{e^{x}(ln2-1)} + C\)
c) Ta có \(f(x) = \frac{1}{sin^{2}x.cos^{2}x}=\frac{4}{sin^{2}2x}\)
Advertisements (Quảng cáo)
hoặc \(f(x) =\frac{1}{cos^{2}x.sin^{2}x}=\frac{1}{cos^{2}x}+\frac{1}{sin^{2}x}\)
Do đó nguyên hàm của \(f(x)\) là \(F(x)= -2cot2x + C\)
d) Áp dụng công thức biến tích thành tổng:
\(f(x) =sin5xcos3x = \frac{1}{2}(sin8x +sin2x)\).
Vậy nguyên hàm của hàm số \(f(x)\) là
\(F(x)\) = \(-\frac{1}{4}\)(\(\frac{1}{4}cos8x + cos2x) +C\)
e) Ta có \(tan^{2}x = \frac{1}{cos^{2}x}-1\)
vậy nguyên hàm của hàm số f(x) là \(F(x) = tanx – x + C\)
g) Ta có \(\int {{e^{3 – 2x}}} dx = – {1 \over 2}\int {{e^{3 – 2x}}} d(3 – 2x) = – {1 \over 2}{e^{3 – 2x}} + C\)
h) Ta có :\(\int \frac{dx}{(1+x)(1-2x))}=\frac{1}{3}\int (\frac{1}{1+x}+\frac{2}{1-2x})dx\)
= \(\frac{1}{3}(ln\left | 1+x \right |)-ln\left | 1-2x \right |)+C\)
= \(\frac{1}{3}ln\left | \frac{1+x}{1-2x} \right | +C\).
Bài 3 trang 101- SGK Giải tích 12: Sử dụng phương pháp biến số, hãy tính:
a) \(∫{(1-x)}^9dx\) (đặt \(u =1-x\) ) ;
b) \(∫x{(1 + {x^2})^{{3 \over 2}}}dx\) (đặt \(u = 1 + x^2\) )
Advertisements (Quảng cáo)
c) \(∫cos^3xsinxdx\) (đặt \(t = cosx\))
d) \(\int \frac{dx}{e^{x}+e^{-x}+2}\) (đặt \(u= e^x+1\))
a) Cách 1: Đặt \(u = 1 – x \Rightarrow du= -dx\). Khi đó ta được \(-\int u^{9}du = -\frac{1}{10}u^{10}+C\)
Suy ra \(\int(1-x)^{9}dx=-\frac{(1-x)^{10}}{10}+C\)
Cách 2: \(\smallint {\left( {1 – x} \right)^9}dx = – \smallint {\left( {1 – x} \right)^{9}}d\left( {1 – x} \right)=\) \(-\frac{(1-x)^{10}}{10} +C\)
b) Cách 1 : Tương tự cách 1 phần a.
Cách 2: \(\int x(1+x^{2})^{\frac{3}{2}}dx\) = \(\frac{1}{2}\int (1+x^{2})^{\frac{3}{2}}d(1+x^2{})\)
= \(\frac{1}{2}.\frac{2}{5}(1+x^{2})^{\frac{5}{2}}+C\) = \(\frac{1}{5}.(1+x^{2})^{\frac{5}{2}}+C\)
c)\(∫cos^3xsinxdx = -∫cos^3xd(cosx)\)
\(= -\frac{1}{4}.cos^{4}x + C\)
d) \(\int \frac{dx}{e^{x}+e^{-x}+2}\) = \(\int \frac{e^{x}}{e^{2x}+2e^{x}+1}dx\)= \(\int \frac{d(e^{x}+1)}{(e^{x}+1)^{2}}dx\)
=\(\frac{-1}{e^{x}+1} + C\).
Bài 4 trang 101- SGK Toán Giải tích 12: Sử dụng phương pháp tính nguyên hàm từng phần, hãy tính:
a) \(∫xln(1+x)dx\); b) \(\int {({x^2} + 2x + 1){e^x}dx}\)
c) \(∫xsin(2x+1)dx\); d) \(\int (1-x)cosxdx\)
a) Áp dụng phương pháp tìm nguyên hàm từng phần:
Đặt \(u= ln(1+x)\)
\(dv= xdx\)
\(\Rightarrow du=\frac{1}{1+x}dx\) , \(v=\frac{x^{2}-1}{2}\)
Ta có: \(∫xln(1+x)dx = \frac{1}{2}.(x^{2}-1)ln(1+x)\)\(-\frac{1}{2}\int (x-1)dx)\)
\(=\frac{1}{2}.(x^{2}-1)ln(1+x)-\frac{1}{4}x^{2}+\frac{x}{2}+C\)
b) Tìm nguyên hàm t4ừng phần hai lần:
Đặt \(u = ({x^2} + 2x – 1)\) và \(dv=e^xdx\)
Suy ra \(du = (2x+2)dx\), \(v=e^x\)
. Khi đó:
\(\int {({x^2} + 2x{\rm{ }} – {\rm{ }}1){e^x}dx} \) = \(({x^2} + 2x{\rm{ }} – {\rm{ }}1){e^x}\) – \(\int {(2x + 2){e^x}dx} \)
Đặt : \(u=2x+2\); \(dv={e^x}dx\)
\(\Rightarrow du = 2dx ;v={e^x}\)
Khi đó: \(\int {(2x + 2){e^x}dx} \)\(= {(2x + 2){e^x}}\)\(- 2\int {{e^x}dx} \)\(= {\rm{ }}{e^x}\left( {2x + 2} \right){\rm{ }}-{\rm{ }}2{e^x} + C\)
Vậy: \(\int {({x^2} + 2x{\rm{ }} – {\rm{ }}1){e^x}dx} ={e^x}({x^2} – 1){\rm{ }} + {\rm{ }}C\)
c) Đặt \(u=x\); \(dv = sin(2x+1)dx\)
\(\eqalign{
& \int {x\sin \left( {2x + 1} \right) = – {1 \over 2}x\cos \left( {2x + 1} \right)} + {1 \over 2}\int {\cos \left( {2x + 1} \right)dx} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = – {1 \over 2}x\cos \left( {2x + 1} \right) + {1 \over 4}\sin \left( {2x + 1} \right) + C \cr} \)
d) Đặt \(u = 1 – x\) ;\(dv = cosxdx\)
\(\eqalign{
& \int {\left( {1 – x} \right)\cos xdx = \left( {1 – x} \right)\sin x + \int {\sin xdx} } \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {1 – x} \right)\sin x – \cos x + C \cr} \)