Trang Chủ Sách bài tập lớp 11 SBT Toán 11

Bài 2.10, 2.11, 2.12 trang 70 SBT Hình học 11: Tìm tập hợp điểm K khi M di động trên đoạn AD (M không là trung điểm của AD) ?

Bài 2 hai đường thẳng chéo nhau và hai đường thẳng song song Sách bài tập Hình học 11. Giải bài 2.10, 2.11, 2.12 trang 70. Câu 2.10: Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Tìm giao tuyến của các cặp mặt phẳng sau đây…; Tìm tập hợp điểm K khi M di động trên đoạn AD (M không là trung điểm của AD) ?

Bài 2.10: Cho hình chóp S.ABCD có đáy là hình hình hành ABCD. Tìm giao tuyến của các cặp mặt phẳng sau đây:

a) (SAC) và (SBD);

b) (SAB) và (SCD);

c) (SAD) và (SBC)

(h.2.28)

a) Ta có:  \(\left\{ \matrix{
S \in \left( {SAC} \right) \hfill \cr
S \in \left( {SB{\rm{D}}} \right) \hfill \cr} \right. \Rightarrow S \in \left( {SAC} \right) \cap \left( {SB{\rm{D}}} \right)\)

Giả sử:

\(AC \cap B{\rm{D}} = O \Rightarrow \left\{ \matrix{
O \in \left( {SAC} \right) \hfill \cr
O \in \left( {SB{\rm{D}}} \right) \hfill \cr} \right.\)

\(\eqalign{
& \Rightarrow O \in \left( {SAC} \right) \cap \left( {SB{\rm{D}}} \right) \cr
& \Rightarrow \left( {SAC} \right) \cap \left( {SB{\rm{D}}} \right) = SO \cr} \)

b)  Ta có :

\(\left\{ \matrix{
S \in \left( {SAB} \right) \hfill \cr
S \in \left( {SC{\rm{D}}} \right) \hfill \cr} \right. \Rightarrow S \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right)\)

Ta lại có

\(\left\{ \matrix{
AB \subset \left( {SAB} \right) \hfill \cr
C{\rm{D}} \subset \left( {SC{\rm{D}}} \right) \hfill \cr
AB\parallel C{\rm{D}} \hfill \cr} \right. \Rightarrow \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) = Sx\) và \(S{\rm{x}}\parallel AB\parallel CD\).

Advertisements (Quảng cáo)

c) Lập luận tương tự câu b)  ta có \( \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = Sy\) và \(Sy\parallel AD\parallel BC\).

Bài 2.11: Cho tứ diện ABCD. Trên các cạnh AB và AC lần lượt lấy các điểm M và N sao cho . Tìm giao tuyến của hai mặt phẳng (DBC) và (DMN).

(h.2.29)

\(\left\{ \matrix{
M \in AB \hfill \cr
N \in AC \hfill \cr} \right. \Rightarrow MN \subset \left( {ABC} \right)\)

Trong tam giác ABC ta có:

\({{AM} \over {AB}} = {{AN} \over {AC}} \Rightarrow MN\parallel BC\)

Advertisements (Quảng cáo)

Hiển nhiên \(D \in \left( {DBC} \right) \cap \left( {DMN} \right)\)

\(\left\{ \matrix{
BC \subset \left( {DBC} \right) \hfill \cr
MN \subset \left( {DMN} \right) \hfill \cr
BC\parallel MN \hfill \cr} \right.\)

\( \Rightarrow \left( {DBC} \right) \cap \left( {DMN} \right) = Dx\) và \(Dx\parallel BC\parallel MN\)

Bài 2.12: Cho tứ diện ABCD. Cho I và J tương ứng là trung điểm của BC và AC , M  là một điểm tùy ý trên cạnh AD.

a) Tìm giao tuyến d của hai mặt phẳng (MIJ) và (ABD)

b) Gọi N là giao điểm của BD với giao tuyến d, K là giao điểm của IN và IM. Tìm tập hợp điểm K khi M di động trên đoạn AD (M không là trung điểm của AD).

c) Tìm giao tuyến của hai mặt phẳng (ABK) và (MIJ).

(h.2.30)

a) \(\left\{ \matrix{
M \in \left( {MIJ} \right) \hfill \cr
M \in AD \Rightarrow M \in \left( {ABD} \right) \hfill \cr} \right. \Rightarrow M \in \left( {MIJ} \right) \cap \left( {ABD} \right)\)

Ta cũng có:

\(\left\{ \matrix{
IJ\parallel AB \hfill \cr
IJ \subset \left( {MIJ} \right) \hfill \cr
AB \subset \left( {ABD} \right) \hfill \cr} \right.\)

\( \Rightarrow \left( {MIJ} \right) \cap \left( {ABD} \right) = d = Mt\) và \(Mt\parallel AB\parallel IJ\)

b) Ta có: \(Mt\parallel AB \Rightarrow Mt \cap BD = N\)

\(IN \cap JM = K \Rightarrow \left\{ \matrix{
K \in IN \hfill \cr
K \in JM \hfill \cr} \right.\)

Vì \(K \in IN \Rightarrow K \in \left( {BC{\rm{D}}} \right)\)

Và \(K \in JM \Rightarrow K \in \left( {AC{\rm{D}}} \right)\)

Mặt khác \(\left( {BC{\rm{D}}} \right) \cap \left( {AC{\rm{D}}} \right) = C{\rm{D}}\) do đó \(K \in C{\rm{D}}\). Do vậy K nằm trên hai nửa đường thẳng Cm và Dn thuộc đường thẳng CD. ( Để  ý rằng nếu M là trung điểm của AD thì sẽ không có điểm K.)

c) Ta có:

\(\left\{ \matrix{
K \in \left( {ABK} \right) \hfill \cr
K \in IN \Rightarrow K \in \left( {MIJ} \right) \hfill \cr} \right. \Rightarrow K \in \left( {ABK} \right) \cap \left( {MIJ} \right)\)

Mà \(\left\{ \matrix{
AB \subset \left( {ABK} \right) \hfill \cr
IJ \subset \left( {MIJ} \right) \hfill \cr
AB\parallel IJ \hfill \cr} \right. \Rightarrow \left( {ABK} \right) \cap \left( {MIJ} \right) = Kx\) và \(K{\rm{x}}\parallel AB\parallel IJ\)

Advertisements (Quảng cáo)