Bài 2 giá trị lượng giác của một cung SBT Toán lớp 10. Giải bài 10, 11, 12 trang 189 Sách bài tập Toán Đại số 10. Câu 10: Tính…
Bài 10: Biết \(\sin \alpha = {3 \over 4}\) và \({\pi \over 2} < \alpha < \pi \). Tính
a) \(A = {{2\tan \alpha – 3\cot \alpha } \over {\cos \alpha + tan\alpha }}\)
b) \(B = {{{\rm{co}}{{\rm{s}}^2}\alpha + {{\cot }^2}\alpha } \over {\tan \alpha – \cot \alpha }}\)
a) \({\pi \over 2} < \alpha < \pi = > \cos \alpha < 0\)
Ta có: \(\cos \alpha = – \sqrt {1 – {{\sin }^2}\alpha } = – \sqrt {1 – {9 \over {16}}} = – {{\sqrt 7 } \over 4}\)
\(\tan \alpha = {{\sin \alpha } \over {\cos \alpha }} = – {3 \over {\sqrt 7 }},\cot \alpha = – {{\sqrt 7 } \over 3}\)
Vậy \(A = {{ – {6 \over {\sqrt 7 }} + \sqrt 7 } \over { – {{\sqrt 7 } \over 4} – {3 \over {\sqrt 7 }}}} = – {4 \over {19}}\)
b) \(B = {{{7 \over {16}} + {7 \over 9}} \over { – {3 \over {\sqrt 7 }} + {{\sqrt 7 } \over {\sqrt 7 }}}} = {{{{7 \times 25} \over {144}}} \over { – {2 \over {3\sqrt 7 }}}} = – {{175\sqrt 7 } \over {96}}\)
Bài 11: Cho \(\tan \alpha – 3\cot \alpha = 6\) và \(\pi < \alpha < {{3\pi } \over 2}\). Tính
a) \(\sin \alpha + \cos \alpha \)
Advertisements (Quảng cáo)
b) \({{2\sin \alpha – \tan \alpha } \over {{\rm{cos}}\alpha {\rm{ + cot}}\alpha }}\)
Vì \(\pi < \alpha < {{3\pi } \over 2}\)
Nên \(\cos \alpha < 0,\sin \alpha < 0\) và \(\tan \alpha > 0\)
Ta có: \(\tan \alpha – 3\cot \alpha = 6 \Leftrightarrow \tan \alpha – {3 \over {\tan \alpha }} – 6 = 0\)
\( \Leftrightarrow {\tan ^2}\alpha – 6\tan \alpha – 3 = 0\)
Advertisements (Quảng cáo)
Vì \(\tan \alpha > 0\) nên \(\tan \alpha = 3 + 2\sqrt 3\)
a) \({\rm{co}}{{\rm{s}}^2}\alpha = {1 \over {1 + {{\tan }^2}\alpha }} = {1 \over {22 + 12\sqrt 3 }}\)
Suy ra \({\rm{cos}}\alpha {\rm{ = – }}{1 \over {\sqrt {22 + 12\sqrt 3 } }},\sin \alpha = – {{3 + 2\sqrt 3 } \over {\sqrt {22 + 12\sqrt 3 } }}.\)
Vậy \(\sin \alpha + c{\rm{os}}\alpha {\rm{ = – }}{{4 + 2\sqrt 3 } \over {\sqrt {22 + 12\sqrt 3 } }}\)
\(\eqalign{
& {{2\sin \alpha – \tan \alpha } \over {{\rm{cos}}\alpha {\rm{ + cot}}\alpha }} = {{\sin \alpha (2 – {1 \over {{\rm{cos}}\alpha }})} \over {{\rm{cos(1 + }}{1 \over {\sin \alpha }})}} \cr
& = \tan \alpha .{{2\cos \alpha – 1} \over {{\rm{cos}}\alpha }}.{{\sin \alpha } \over {\sin \alpha + 1}} = {\tan ^2}\alpha .{{2\cos \alpha – 1} \over {\sin \alpha + 1}} \cr} \)
\(\eqalign{
& {(3 + 2\sqrt 3 )^2}.{{ – {2 \over {\sqrt {22 + 12\sqrt 3 } }}} \over { – {{3 + 2\sqrt 3 } \over {\sqrt {22 + 12\sqrt 3 } }} + 1}} \cr
& = (21 + 12\sqrt 3 ).{{2 + \sqrt {22 + 12\sqrt 3 } } \over {3 + 2\sqrt 3 – \sqrt {22 + 12\sqrt 3 } }} \cr} \)
Bài 12: Chứng minh các đẳng thức
a) \({{\tan \alpha – \tan \beta } \over {{\rm{cot}}\beta {\rm{ – cot}}\alpha }} = \tan \alpha \tan \beta\)
b) \(\tan {100^0} + {{\sin {{530}^0}} \over {1 + \sin {{640}^0}}} = {1 \over {\sin {{10}^0}}}\)
c) \(2({\sin ^6}\alpha + c{\rm{o}}{{\rm{s}}^6}\alpha ) + 1 = 3({\sin ^4}\alpha + c{\rm{o}}{{\rm{s}}^4}\alpha )\)
a) \(\eqalign{
& {{\tan \alpha – \tan \beta } \over {{\rm{cot}}\beta {\rm{ – cot}}\alpha }} = {{\tan \alpha – \tan \beta } \over {{1 \over {\tan \beta }} – {1 \over {\tan \alpha }}}} \cr
& = {{\tan \alpha – \tan \beta } \over {{{\tan \alpha – \tan \beta } \over {tan\alpha \tan \beta }}}} = \tan \alpha \tan \beta \cr} \)
b) \(\eqalign{
& \tan {100^0} + {{\sin {{530}^0}} \over {1 + \sin {{640}^0}}} \cr
& = \tan ({90^0} + {10^0}) + {{\sin ({{360}^0} + {{170}^0})} \over {1 + \sin ({{720}^0} – {{80}^0})}} \cr} \)
\(\eqalign{
& = – \cot {10^0} + {{\sin {{170}^0}} \over {1 – \sin {{80}^0}}} \cr
& = – {{\cos {{10}^0}} \over {\sin {{10}^0}}} + {{\sin {{10}^0}} \over {1 – c{\rm{os1}}{{\rm{0}}^0}}} \cr} \)
\( = {{ – \cos {{10}^0} + {{\cos }^2}{{10}^0} + {{\sin }^2}{{10}^0}} \over {\sin {{10}^0}(1 – c{\rm{os1}}{{\rm{0}}^0})}} = {1 \over {\sin {{10}^0}}}\)
\(\eqalign{
& c)2({\sin ^6}\alpha + c{\rm{o}}{{\rm{s}}^6}\alpha ) + 1 \cr
& = 2({\sin ^2}x + c{\rm{o}}{{\rm{s}}^2}x)({\sin ^4}x – {\sin ^2}x{\cos ^2}x + c{\rm{o}}{{\rm{s}}^4}x) + 1 \cr
& = 2({\sin ^4}x + c{\rm{o}}{{\rm{s}}^4}x) + {({\sin ^2}x + c{\rm{o}}{{\rm{s}}^2}x)^2} – 2{\sin ^{^2}}x{\cos ^2}x \cr
& = 2({\sin ^4}x + c{\rm{o}}{{\rm{s}}^4}x) + ({\sin ^4}x + c{\rm{o}}{{\rm{s}}^4}x) \cr
& = 3({\sin ^4}\alpha + c{\rm{o}}{{\rm{s}}^4}\alpha ) \cr} \)