Câu 40: Cho A = {n ∈ Z | n = 2k, k ∈ Z};
B là tập hợp các số nguyên có chữ số tận cùng là 0, 2, 4, 6, 8;
C = {n ∈ Z | n = 2k – 2, k ∈ Z}
D = {n ∈ Z | n = 3k + 2, k ∈ Z}
Chứng minh rằng A = B, A = C và A ≠ D
a) Giả sử
n = 2k, k ∈ Z thì n là số chẵn nên n có chữ số tận cùng là 0, 2, 4, 6 hoặc 8 , do đó A ⊂ B. Ngược lại, những số nguyên n có chữ số tận cùng là 0, 2, 4, 6, 8 thì n là số chẵn nên n = 2k, k ∈ Z.
Do đó B ⊂ A.
Vậy A = B
Advertisements (Quảng cáo)
b)
∀ n ∈ A, n = 2k, k ∈ Z ⇒ n = 2(k + 1) – 2 ⇒ n ∈ C ⇒ A ⊂ C
∀ n ∈ C, n = 2k – 2 = 2(k – 1), k – 1 ∈ Z ⇒ n ∈ A ⇒ C ⊂ A
Vậy A = C
c) Ta có:
0 ∈ A nhưng 0 ∈ D. Do đó A ≠ D.
Advertisements (Quảng cáo)
Câu 41: Cho hai nửa khoảng A = (0, 2] và B = [1, 4).
Tìm CR(A ∪ B) và CR(A ∩ B)
Ta có: A ∪ B = (0, 4); A ∩ B = [1, 2]
CR(A ∪ B) = \((-∞; 0] ∪ [4; +∞)\)
CR(A ∩ B) = \((-∞; 1) ∪ (2; +∞)\)
Câu 42: Cho A = {a, b, c}; B = {b, c, d}; C = {b, c, e}
Chọn khẳng định đúng trong các khẳng định sau:
A. A ∪ (B ∩ C) = (A ∪ B) ∩ C;
B. A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
C. (A ∪ B) ∩ C = (A ∪ B) ∩ (A ∪ C)
D. (A ∩ B) ∪ C = (A ∪ B) ∩ C
Chọn B