Câu 44: Biến đổi các biểu thức sau thành phân thức
a. \({1 \over 2} + {x \over {1 – {x \over {x + 2}}}}\)
b. \({{x – {1 \over {{x^2}}}} \over {x + {1 \over x} + {1 \over {{x^2}}}}}\)
c. \({{1 – {{2y} \over x} + {{{y^2}} \over {{x^2}}}} \over {{1 \over x} – {1 \over y}}}\)
d. \({{{x \over 4} – 1 + {3 \over {4x}}} \over {{x \over 2} – {6 \over x} + {1 \over 2}}}\)
a. \({1 \over 2} + {x \over {1 – {x \over {x + 2}}}}\)\( = {1 \over 2} + {x \over {{{x + 2 – x} \over {x + 2}}}} = {1 \over 2} + {x \over {{2 \over {x + 2}}}}\)
b. \({{x – {1 \over {{x^2}}}} \over {x + {1 \over x} + {1 \over {{x^2}}}}}\) \( = \left( {x – {1 \over {{x^2}}}} \right):\left( {1 + {1 \over x} + {1 \over {{x^2}}}} \right) = {{{x^3} – 1} \over {{x^2}}}:{{{x^2} + x + 1} \over {{x^2}}}\)
\( = {{{x^3} – 1} \over {{x^2}}}.{{{x^2}} \over {{x^2} + x + 1}} = {{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right){x^2}} \over {{x^2}\left( {{x^2} + x + 1} \right)}} = x – 1\)
c. \({{1 – {{2y} \over x} + {{{y^2}} \over {{x^2}}}} \over {{1 \over x} – {1 \over y}}}\)\( = \left( {1 – {{2y} \over x} + {{{y^2}} \over {{x^2}}}} \right):\left( {{1 \over x} – {1 \over y}} \right) = {{{x^2} – 2xy + {y^2}} \over {{x^2}}}:{{y – x} \over {xy}}\)
\( = {{{x^2} – 2xy + {y^2}} \over {{x^2}}}.{{xy} \over {y – x}} = {{{{\left( {y – x} \right)}^2}.xy} \over {{x^2}\left( {y – x} \right)}} = {{y\left( {y – x} \right)} \over x}\)
d. \({{{x \over 4} – 1 + {3 \over {4x}}} \over {{x \over 2} – {6 \over x} + {1 \over 2}}}\)\( = \left( {{x \over 4} – 1 + {3 \over {4x}}} \right):\left( {{x \over 2} – {6 \over x} + {1 \over 2}} \right) = {{{x^2} – 4x + 3} \over {4x}}:{{{x^2} – 12x + x} \over {2x}}\)
\(\eqalign{ & = {{{x^2} – 4x + 3} \over {4x}}.{{2x} \over {{x^2} – 12 + x}} = {{{x^2} – x – 3x + 3} \over {4x}}.{{2x} \over {{x^2} – 3x + 4x – 12}} \cr & = {{\left( {x – 1} \right)\left( {x – 3} \right)} \over {4x}}.{{2x} \over {\left( {x – 3} \right)\left( {x + 4} \right)}} = {{\left( {x – 1} \right)\left( {x – 3} \right).2x} \over {4x\left( {x – 3} \right)\left( {x + 4} \right)}} = {{x – 1} \over {2\left( {x + 4} \right)}} \cr} \)
Câu 45: Thực hiện các phép tính sau :
a. \(\left( {{{5x + y} \over {{x^2} – 5xy}} + {{5x – y} \over {{x^2} + 5xy}}} \right).{{{x^2} – 25{y^2}} \over {{x^2} + {y^2}}}\)
b. \({{4xy} \over {{y^2} – {x^2}}}:\left( {{1 \over {{x^2} + 2xy + {y^2}}} – {1 \over {{x^2} – {y^2}}}} \right)\)
Advertisements (Quảng cáo)
c. \(\left[ {{1 \over {{{\left( {2x – y} \right)}^2}}} + {2 \over {4{x^2} – {y^2}}} + {1 \over {{{\left( {2x + y} \right)}^2}}}} \right].{{4{x^2} + 4xy + {y^2}} \over {16x}}\)
d. \(\left( {{2 \over {x + 2}} – {4 \over {{x^2} + 4x + 4}}} \right):\left( {{2 \over {{x^2} – 4}} + {1 \over {2 – x}}} \right)\)
a. \(\left( {{{5x + y} \over {{x^2} – 5xy}} + {{5x – y} \over {{x^2} + 5xy}}} \right).{{{x^2} – 25{y^2}} \over {{x^2} + {y^2}}}\)
\(\eqalign{ & = \left[ {{{5x + y} \over {x\left( {x – 5y} \right)}} + {{5x – y} \over {x\left( {x + 5y} \right)}}} \right].{{{x^2} – 25{y^2}} \over {{x^2} + {y^2}}} \cr & = {{\left( {5x + y} \right)\left( {x + 5y} \right) + \left( {5x – y} \right)\left( {x – 5y} \right)} \over {x\left( {x – 5y} \right)\left( {x + 5y} \right)}}.{{\left( {x – 5y} \right)\left( {x + 5y} \right)} \over {{x^2} + {y^2}}} \cr & = {{5{x^2} + 25xy + xy + 5{y^2} + 5{x^2} – 25xy – xy + 5{y^2}} \over {x\left( {{x^2} + {y^2}} \right)}} \cr & = {{10{x^2} + 10{y^2}} \over {x\left( {{x^2} + {y^2}} \right)}} = {{10\left( {{x^2} + {y^2}} \right)} \over {x\left( {{x^2} + {y^2}} \right)}} = {{10} \over x} \cr} \)
b. \({{4xy} \over {{y^2} – {x^2}}}:\left( {{1 \over {{x^2} + 2xy + {y^2}}} – {1 \over {{x^2} – {y^2}}}} \right)\)
\(\eqalign{ & = {{4xy} \over {{y^2} – {x^2}}}:\left[ {{1 \over {{{\left( {x + y} \right)}^2}}} – {1 \over {\left( {x + y} \right)\left( {x – y} \right)}}} \right] \cr & = {{4xy} \over {{y^2} – {x^2}}}:{{x – y – \left( {x + y} \right)} \over {{{\left( {x + y} \right)}^2}\left( {x – y} \right)}} = {{4xy} \over {{y^2} – {x^2}}}:{{ – 2y} \over {{{\left( {x + y} \right)}^2}\left( {x – y} \right)}} = {{4xy} \over {{y^2} – {x^2}}}.{{{{\left( {x + y} \right)}^2}\left( {y – x} \right)} \over {2y}} \cr & = {{4xy{{\left( {x + y} \right)}^2}\left( {y – x} \right)} \over {\left( {y + x} \right)\left( {y – x} \right).2y}} = 2x\left( {x + y} \right) \cr} \)
c. \(\left[ {{1 \over {{{\left( {2x – y} \right)}^2}}} + {2 \over {4{x^2} – {y^2}}} + {1 \over {{{\left( {2x + y} \right)}^2}}}} \right].{{4{x^2} + 4xy + {y^2}} \over {16x}}\)
\(\eqalign{ & = \left[ {{1 \over {{{\left( {2x – y} \right)}^2}}} + {2 \over {\left( {2x + y} \right)\left( {2x – y} \right)}} + {1 \over {{{\left( {2x + y} \right)}^2}}}} \right].{{{{\left( {2x + y} \right)}^2}} \over {16x}} \cr & = {{{{\left( {2x + y} \right)}^2} + 2\left( {2x + y} \right)\left( {2x – y} \right) + {{\left( {2x – y} \right)}^2}} \over {{{\left( {2x + y} \right)}^2}.{{\left( {2x – y} \right)}^2}}}.{{{{\left( {2x + y} \right)}^2}} \over {16x}} \cr & = {{{{\left[ {\left( {2x + y} \right) + \left( {2x – y} \right)} \right]}^2}} \over {16x{{\left( {2x – y} \right)}^2}}} = {{{{\left( {4x} \right)}^2}} \over {16x{{\left( {2x – y} \right)}^2}}} = {{16{x^2}} \over {16x{{\left( {2x – y} \right)}^2}}} = {x \over {{{\left( {2x – y} \right)}^2}}} \cr} \)
d. \(\left( {{2 \over {x + 2}} – {4 \over {{x^2} + 4x + 4}}} \right):\left( {{2 \over {{x^2} – 4}} + {1 \over {2 – x}}} \right)\)
Advertisements (Quảng cáo)
\(\eqalign{ & = \left[ {{2 \over {x + 2}} – {4 \over {{{\left( {x + 2} \right)}^2}}}} \right]:\left[ {{2 \over {\left( {x + 2} \right)\left( {x – 2} \right)}} – {1 \over {x – 2}}} \right] \cr & = {{2\left( {x + 2} \right) – 4} \over {{{\left( {x + 2} \right)}^2}}}:{{2 – \left( {x + 2} \right)} \over {\left( {x + 2} \right)\left( {x – 2} \right)}} = {{2x + 4 – 4} \over {{{\left( {x + 2} \right)}^2}}}:{{2 – x – 2} \over {\left( {x + 2} \right)\left( {x – 2} \right)}} \cr & = {{2x} \over {{{\left( {x + 2} \right)}^2}}}.{{\left( {x + 2} \right)\left( {x – 2} \right)} \over { – x}} = {{2\left( {x – 2} \right)} \over { – \left( {x + 2} \right)}} = {{2\left( {2 – x} \right)} \over {x + 2}} \cr} \)
Câu 46: Tìm điều kiện của biến để giá trị của phân thức xác định :
a. \({{5{x^2} – 4x + 2} \over {20}}\)
b. \({8 \over {x + 2004}}\)
c. \({{4x} \over {3x – 7}}\)
d. \({{{x^2}} \over {x + z}}\)
a. Phân thức : \({{5{x^2} – 4x + 2} \over {20}}\)xác định với mọi \(x \in R\)
b. Phân thức : \({8 \over {x + 2004}}\)xác định khi \(x + 2004 \ne 0 \Rightarrow x \ne – 2004\)
c. Phân thức : \({{4x} \over {3x – 7}}\)xác định khi \(3x – 7 \ne 0 \Rightarrow x \ne {7 \over 3}\)
d. Phân thức : \({{{x^2}} \over {x + z}}\)xác định khi \(x + z \ne 0 \Rightarrow x \ne – z\)
Câu 47: Phân tích mẫu thức của các phân thức sau thành nhân tử rồi tìm điều kiện của x để giá trị của phân thức xác định :
a. \({5 \over {2x – 3{x^2}}}\)
b. \({{2x} \over {8{x^3} + 12{x^2} + 6x + 1}}\)
c. \({{ – 5{x^2}} \over {16 – 24x + 9{x^2}}}\)
d. \({3 \over {{x^2} – 4{y^2}}}\)
a. \({5 \over {2x – 3{x^2}}}\)\( = {5 \over {x\left( {2 – 3x} \right)}}\) xác định khi \(x\left( {2 – 3x} \right) \ne 0\)
\(\left\{ {\matrix{{x \ne 0} \cr{2 – 3x \ne 0} \cr} \Rightarrow \left\{ {\matrix{ {x \ne 0} \cr {x \ne {2 \over 3}} \cr} } \right.} \right.\)
Vậy phân thức \({5 \over {2x – 3{x^2}}}\) xác định với \(x \ne 0\) và \(x \ne {2 \over 3}\)
b. \({{2x} \over {8{x^3} + 12{x^2} + 6x + 1}}\) \( = {{2x} \over {{{\left( {2x + 1} \right)}^3}}}\) xác định khi \({\left( {2x + 1} \right)^3} \ne 0 \Rightarrow 2x + 1 \ne 0 \Rightarrow x \ne – {1 \over 2}\)
c. \({{ – 5{x^2}} \over {16 – 24x + 9{x^2}}}\)\( = {{ – 5{x^2}} \over {{4^2} – 2.4.3x + {{\left( {3x} \right)}^2}}} = {{ – 5{x^2}} \over {{{\left( {4 – 3x} \right)}^2}}}\)
xác định khi \({\left( {4 – 3x} \right)^2} \ne 0 \Rightarrow 4 – 3x \ne 0 \Rightarrow x \ne {4 \over 3}\)
d. \({3 \over {{x^2} – 4{y^2}}}\)\( = {3 \over {\left( {x – 2y} \right)\left( {x + 2y} \right)}}\) xác định khi \(\left( {x – 2y} \right)\left( {x + 2y} \right) \ne 0\)
\( \Rightarrow \left\{ {\matrix{{x – 2y \ne 0} \cr{x + 2y \ne 0} \cr} \Rightarrow x \ne \pm 2y} \right.\)