Trang Chủ Bài tập SGK lớp 11 Bài tập Toán lớp 11 Nâng cao

Bài 3. Một số dạng phương trình lượng giác đơn giản: Giải bài 27, 28 ,29, 30, 31, 32, 33, 34, 35, 36, 37, 38 ,39 , 40, 41, 42 trang 41, 42, 46, 47 Đại số và Giải tích 11 Nâng cao

Giải bài 27, 28 ,29, 30, 31, 32, 33, 34, 35, 36, 37, 38 ,39 , 40, 41, 42 trang 41, 42, 46, 47 – Bài 3. Một số dạng phương trình lượng giác đơn giản SGK Đại số và Giải tích 11 Nâng cao. Câu 27: Giải các phương trình sau: \(2\cos x – \sqrt 3 = 0\)

Câu 27. Giải các phương trình sau :

a.  \(2\cos x – \sqrt 3 = 0\)

b.  \(\sqrt 3 \tan 3x – 3 = 0\)

c.  \(\left( {\sin x + 1} \right)\left( {2\cos 2x – \sqrt 2 } \right) = 0\)

a.

\(\eqalign{
& 2\cos x – \sqrt 3 = 0 \Leftrightarrow \cos x = {{\sqrt 3 } \over 2} \Leftrightarrow \cos x = \cos {\pi \over 6} \cr
& \Leftrightarrow x = \pm {\pi \over 6} + k2\pi ,k \in\mathbb Z \cr} \)

b.

\(\eqalign{
& \sqrt 3 \tan 3x – 3 = 0 \Leftrightarrow \tan 3x = \sqrt 3 \Leftrightarrow \tan 3x = \tan {\pi \over 3} \cr
& \Leftrightarrow 3x = {\pi \over 3} + k\pi \Leftrightarrow x = {\pi \over 9} + k{\pi \over 3};k \in\mathbb Z \cr} \)

c.

\(\eqalign{& \left( {\sin x + 1} \right)\left( {2\cos 2x – \sqrt 2 } \right) = 0 \cr & \Leftrightarrow \left[ {\matrix{{\sin x + 1 = 0} \cr {2\cos 2x – \sqrt 2 = 0} \cr} } \right. \Leftrightarrow \left[ {\matrix{{\sin x = – 1} \cr {\cos 2x = {{\sqrt 2 } \over 2}} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{x = – {\pi \over 2} + k2\pi } \cr {2x = \pm {\pi \over 4} + k2\pi } \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = – {\pi \over 2} + k2\pi } \cr {2x = \pm {\pi \over 8} + k\pi } \cr} } \right. \cr} \)

 


Câu 28. Giải các phương trình sau :

a.  \(2{\cos ^2}x – 3\cos x + 1 = 0\)

b.  \({\cos ^2}x + \sin x + 1 = 0\)

c.  \(\sqrt 3 {\tan ^2}x – \left( {1 + \sqrt 3 } \right)\tan x + 1 = 0\)

a. Đặt \(t = \cos x\), \(|t| ≤ 1\) ta có:

\(2{t^2} – 3t + 1 = 0 \Leftrightarrow \left[ {\matrix{{t = 1} \cr {t = {1 \over 2}} \cr} } \right. \Leftrightarrow \left[ {\matrix{{\cos x = 1} \cr {\cos x = {1 \over 2}} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k2\pi } \cr {x = \pm {\pi \over 3} + k2\pi } \cr} \left( {k \in\mathbb Z} \right)} \right.\)

b. Ta có:

\(\eqalign{& {\cos ^2}x + \sin x + 1 = 0 \Leftrightarrow 1 – {\sin ^2}x + \sin x + 1 = 0 \cr & \Leftrightarrow {\sin ^2}x – \sin x – 2 = 0 \Leftrightarrow \left[ {\matrix{{\sin x = – 1} \cr {\sin x = 2\,\left( {\text {loại }} \right)} \cr} } \right. \Leftrightarrow x = – {\pi \over 2} + k2\pi \cr} \)

c.

\(\sqrt 3 {\tan ^2}x – \left( {1 + \sqrt 3 } \right)\tan x + 1 = 0 \Leftrightarrow \left[ {\matrix{{\tan x = 1} \cr
{\tan x = {1 \over {\sqrt 3 }}} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = {\pi \over 4} + k\pi } \cr {x = {\pi \over 6} + k\pi } \cr} } \right.\left( {k \in\mathbb Z} \right)\)


Câu 29. Giải các phương trình sau trên khoảng đã cho rồi dùng bảng số hoặc máy tính bỏ túi để tính gần đúng nghiệm của chúng (tính chính xác đến hàng phần trăm) :

a.  \(3\cos 2x + 10\sin x + 1 = 0\) trên \(\left( { – {\pi \over 2};{\pi \over 2}} \right)\)

b.  \(4\cos 2x + 3 = 0\) trên \(\left( {0;{\pi \over 2}} \right)\)

c.  \({\cot ^2}x – 3\cot x – 10 = 0\) trên \(\left( {0;\pi } \right)\)

d.  \(5 – 3\tan 3x = 0\) trên \(\left( { – {\pi \over 6};{\pi \over 6}} \right)\)

a. Ta có:

\(\eqalign{& 3\cos 2x + 10\sin x + 1 = 0 \cr & \Leftrightarrow – 6{\sin ^2}x + 6\sin x + 4 = 0 \Leftrightarrow \left[ {\matrix{{\sin x = – {1 \over 3}} \cr {\sin x = 2\,\left( {\text{ loại }} \right)} \cr} } \right. \cr} \)

Phương trình \(\sin x = – {1 \over 3}\) có nghiệm gần đúng là \(x ≈ -0,34\)

b. Ta thấy \(0 < x < {\pi \over 2} \Leftrightarrow 0 < 2\pi < \pi .\) Với điều kiện đó, ta có :

\(4\cos 2x + 3 = 0 \Leftrightarrow \cos 2x = – {3 \over 4} \Leftrightarrow 2x = \alpha \Leftrightarrow x = {\alpha \over 2},\)

trong đó \(α\) là số thực thuộc khoảng \((0 ; π)\) thỏa mãn \(\cos \alpha = – {3 \over 4}\). Dùng bảng số hoặc máy tính, ta tìm được \(α ≈ 2,42\). Từ đó nghiệm gần đúng của phương trình là  \(x = {\alpha \over 2} \approx 1,21\)

c.  \({\cot ^2}x – 3\cot x – 10 = 0 \Leftrightarrow \left[ {\matrix{{\cot x = 5} \cr {\cot x = – 2} \cr} } \right.\)

Nghiệm gần đúng của phương trình trong khoảng \((0; π)\) là \(x ≈ 0,2; x ≈ 2,68\)

d. \(x \in \left( { – {\pi \over 6};{\pi \over 6}} \right) \Leftrightarrow 3x \in \left( { – {\pi \over 2};{\pi \over 2}} \right).\) Với điều kiện đó, ta có :

\(5 – 3\tan 3x = 0 \Leftrightarrow \tan 3x = {5 \over 3} \Leftrightarrow 3x = \beta \Leftrightarrow x = {\beta \over 3},\)

Trong đó \(β\) là số thực thuộc khoảng \(\left( { – {\pi \over 2};{\pi \over 2}} \right)\) thỏa mãn \(\tan \beta = {5 \over 3};\) bảng số hoặc máy tính cho ta \(β ≈ 1,03\). Vậy nghiệm gần đúng của phương trình là \(x ≈ 0,34\).


Câu 30. Giải các phương trình sau :

a. \(3\cos x + 4\sin x = -5\)

b. \(2\sin2x – 2\cos2x =  \sqrt 2 \)

c. \(5\sin2x – 6\cos^2 x = 13\)

a. Chia hai vế phương trình cho \(\sqrt {{3^2} + {4^2}} = 5\) ta được :

\(\eqalign{
& {3 \over 5}\cos x + {4 \over 5}\sin x = – 1 \Leftrightarrow \cos x\cos \alpha + \sin x\sin \alpha = – 1 \cr
& \left( {\text{ trong đó }\,\cos \alpha = {3 \over 5}\text { và }\,\sin \alpha = {4 \over 5}} \right) \cr
& \text{ Ta có }\,:\,\cos \left( {x – \alpha } \right) = – 1 \Leftrightarrow x – \alpha = \pi + k2\pi \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow x = \pi + \alpha + k2\pi ,k \in Z \cr} \)

b. Chia hai vế phương trình cho \(\sqrt {{2^2} + {2^2}} = 2\sqrt 2 \) ta được :

\(\eqalign{& {1 \over {\sqrt 2 }}\sin 2x – {1 \over {\sqrt 2 }}\cos 2x = {1 \over 2} \Leftrightarrow \sin 2x\cos {\pi \over 4} – \cos 2x\sin {\pi \over 4} = {1 \over 2} \cr & \Leftrightarrow \sin \left( {2x – {\pi \over 4}} \right) = {1 \over 2} \Leftrightarrow \left[ {\matrix{{2x – {\pi \over 4} = {\pi \over 6} + k2\pi } \cr {2x – {\pi \over 4} = \pi – {\pi \over 6} + k2\pi } \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = {{5\pi } \over {24}} + k\pi } \cr {x = {{13\pi } \over {24}} + k\pi } \cr} } \right.,k \in \mathbb Z \cr} \)

c.

\(\eqalign{
& 5\sin 2x – 6{\cos ^2}x = 13 \Leftrightarrow 5\sin 2x – 3\left( {1 + \cos 2x} \right) = 13 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow 5\sin 2x – 3\cos 2x = 16 \cr} \)

Chia cả hai vế cho \(\sqrt {{5^2} – {3^2}} = \sqrt {34} \) ta được :

\({5 \over {\sqrt {34} }}\sin 2x – {3 \over {\sqrt {34} }}\cos 2x = {{16} \over {\sqrt {34} }}\)

Do \({\left( {{5 \over {\sqrt {34} }}} \right)^2} + {\left( {{3 \over {\sqrt {34} }}} \right)^2} = 1\) nên ta chọn được số \(α\) sao cho :

\(\cos \alpha = {5 \over {\sqrt {34} }}\,\text{ và }\,\sin \alpha = {3 \over {\sqrt {34} }}\)

Ta có: \(5\sin 2x – 6{\cos ^2}x = 13 \Leftrightarrow \sin \left( {2x – \alpha } \right) = {{16} \over {\sqrt {34} }} > 1\)

Vậy phương trình đã cho vô nghiệm.


Câu 31. Một vật nặng treo bởi một chiếc lò xo, chuyển động

Khoảng cách

lên xuống qua vị trí cân bằng (h. 1.27).

\(h\) từ vật đó đến vị trí cân bằng ở thời điểm \(t\) giây

được tính theo công thức \(h = |d|\) trong đó

\(d = 5\sin6t – 4\cos6t\),

với \(d\) được tính bằng xentimet, ta quy ước rằng \(d > 0\)

khi vật ở phía trên vị trí cân bằng, \(d < 0\) khi vật ở phía

dưới vị trí cân bằng. Hỏi :

a. Ở thời điểm nào trong 1 giây đầu tiên, vật ở vị trí cân bằng ?

b. Ở thời điểm nào trong 1 giây đầu tiên, vật ở xa vị trí cân bằng nhất ?

(Tính chính xác đến \({1 \over {100}}\) giây).

Ta có:\(5\sin 6t – 4cos6t = \sqrt {41} \left( {{5 \over {\sqrt {41} }}\sin 6t – {4 \over {\sqrt {41} }}\cos 6t} \right) = \sqrt {41} \sin \left( {6t – \alpha } \right)\) , trong đó số \(α\) được chọn sao cho \(\cos \alpha = {5 \over {\sqrt {41} }}\,\text{ và }\,\sin \alpha = {4 \over {\sqrt {41} .}}\) Sử dụng bảng số hoặc máy tính bỏ túi, ta chọn được \(α ≈ 0,675\).

a. Vật ở vị trí cân bằng khi \(d = 0\), nghĩa là \(\sin(6t – α) = 0\)

\( \Leftrightarrow t = {\alpha \over 6} + k{\pi \over 6}\) (với \(k \in\mathbb Z\))

Ta cần tìm \(k\) nguyên dương sao cho \(0 ≤ t ≤ 1\)

\(0 ≤ t ≤ 1 ⇔  0 \le {\alpha \over 6} + k{\pi \over 6} \le 1 \Leftrightarrow – {\alpha \over \pi } \le k \le {{6 – \alpha } \over \pi }\)

Với \(α ≈ 0,675\), ta thu được \(-0,215 < k < 1\), nghĩa là . Vậy trong khoảng 1 giây đầu tiên, có hai thời điểm vật ở vị trí cân bằng là :

\(t \approx {\alpha \over 6} \approx 0,11\) (giây) và \(t = {\alpha \over 6} + {\pi \over 6} \approx 0,64\) (giây)

b. Vật ở xa vị trí cân bằng nhất khi và chỉ khi \(|d|\) nhận giá trị lớn nhất.

Điều đó xảy ra nếu \(\sin(6t – α) = ± 1\). Ta có :

\(\sin \left( {6t – \alpha } \right) = \pm 1 \Leftrightarrow \cos \left( {6t – \alpha } \right) = 0 \Leftrightarrow {\alpha \over 6} + {\pi \over {12}} + k{\pi \over 6}\)

Ta tìm k nguyên dương sao cho \(0 ≤ t ≤ 1\)

\(\eqalign{
& 0 \le t \le 1 \Leftrightarrow 0 \le {\alpha \over 6} + {\pi \over {12}} + k{\pi \over 6} \le 1 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow – {\alpha \over \pi } – {1 \over 2} \le k \le {{6 – \alpha } \over \pi } – {1 \over 2} \cr} \)

Với \(α ≈ 0,675\), ta thu được \(-0,715 < k < 1,2\); nghĩa là \(k \in {\rm{\{ }}0;1\} \). Vậy trong khoảng 1 giây đầu tiên, có hai thời điểm vật ở xa vị trí cân bằng nhất là :

Advertisements (Quảng cáo)

\(t = {\alpha \over 6} + {\pi \over {12}} \approx 0,37\,\left( {giay} \right)\,va\,t = {\alpha \over 6} + {\pi \over {12}} + {\pi \over 6} \approx 0,90\,\left( \text{giây} \right)\)

 


Câu 32. Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi biểu thức sau :

a. \(a\sin x + b\cos x\) (a và b là hằng số, \(a^2+ b^2≠ 0\)) ;

b.  \({\sin ^2}x + \sin x\cos x + 3{\cos ^2}x;\)

c.\(A{\sin ^2}x + B\sin x\cos x + C{\cos ^2}x\) (A, B và C là hằng số).

a. Ta có:

\(\eqalign{
& a\sin x + b\cos x = \sqrt {{a^2} + {b^2}} \left( {{a \over {\sqrt {{a^2} + {b^2}} }}\sin x + {b \over {\sqrt {{a^2} + {b^2}} }}\cos x} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \sqrt {{a^2} + {b^2}} \left( {\sin x\cos \alpha + \sin \alpha \cos x} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \sqrt {{a^2} + {b^2}} \sin \left( {x + \alpha } \right) \cr
& \left( {\text{ trong đó}\,\sin \alpha = {b \over {\sqrt {{a^2} + {b^2}} }};\,\cos \alpha = {a \over {\sqrt {{a^2} + {b^2}} }}} \right) \cr} \)

Giá trị lớn nhất và giá trị nhỏ nhất của \(a\sin x + b\cos x\) lần lượt  là :

\(\sqrt {{a^2} + {b^2}} \,\text{ và }\, – \sqrt {{a^2} + {b^2}} \)

b. Ta có :

\(\eqalign{
& {\sin ^2}x + \sin x\cos x + 3{\cos ^2}x = {1 \over 2}\sin 2x + {{1 – \cos 2x} \over 2} + 3.{{1 + \cos 2x} \over 2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {1 \over 2}\sin 2x + \cos 2x + 2 \cr
& \text{ Ta có }\,\left| {{1 \over 2}\sin 2x + \cos 2x} \right| \le \sqrt {{{\left( {{1 \over 2}} \right)}^2} + {1^2}} = {{\sqrt 5 } \over 2} \cr} \)

Do đó giá trị lớn nhất và giá trị nhỏ nhất của \({\sin ^2}x + \sin x\cos x + 3{\cos ^2}x\) lần lượt là :

\({{\sqrt 5 } \over 2} + 2\,\text{ và }\, – {{\sqrt 5 } \over 2} + 2\)

c. Ta có:

\(\eqalign{
& A{\sin ^2}x + B\sin x\cos x + C{\cos ^2}x \cr
& = A.{{1 – \cos 2x} \over 2} + {B \over 2}.\sin 2x + C.{{1 + \cos 2x} \over 2} \cr
& = {B \over 2}.\sin 2x + {{C – A} \over 2}\cos 2x + {{C + A} \over 2} = a\sin 2x + b\cos 2x + c \cr
& \text{ trong đó}\,\,a = {B \over 2},\,b = {{C – A} \over 2},\,c = {{C + A} \over 2} \cr} \)

Vậy \(A{\sin ^2}x + B\sin x\cos x + C{\cos ^2}x\) đạt giá trị lớn nhất là :

\(\sqrt {{a^2} + {b^2}} + c = \sqrt {{{{B^2} + {{\left( {C – A} \right)}^2}} \over 4}} + {{C + A} \over 2} = {1 \over 2}\sqrt {{B^2} + \left( {C – A} \right)} + {{C + A} \over 2}\) và giá trị nhỏ nhất là  \( – {1 \over 2}\sqrt {{B^2} + {{\left( {C – A} \right)}^2}} + {{C + A} \over 2}.\)


Câu 33. Giải các phương trình sau :

a.  \(2{\sin ^2}x + 3\sqrt 3 \sin x\cos x – {\cos ^2}x = 4\)

b.  \(3{\sin ^2}x + 4\sin 2x + \left( {8\sqrt 3 – 9} \right){\cos ^2}x = 0\)

c.  \({\sin ^2}x + \sin 2x – 2{\cos ^2}x = {1 \over 2}\)

a. \(\cos x = 0\) không thỏa mãn phương trình.

Chia hai vế phương trình cho \({\cos ^2}x \ne 0\) ta được :

\(\eqalign{
& 2{\tan ^2}x + 3\sqrt 3 \tan x – 1 = 4\left( {1 + {{\tan }^2}x} \right) \cr
& \Leftrightarrow 2{\tan ^2}x – 3\sqrt 3 \tan x + 5 = 0 \cr} \)

Phương trình vô nghiệm nên phương trình đã cho vô nghiệm.

b. Các giá trị của \(x\) mà \(\cos x = 0\) không là nghiệm phương trình.

Chia hai vế phương trình cho \({\cos ^2}x\) ta được :

\(\eqalign{& 3{\tan ^2}x + 8\tan x + 8\sqrt 3 – 9 = 0 \Leftrightarrow \left[ {\matrix{{\tan x = – \sqrt 3 } \cr
{\tan x = – {8 \over 3} + \sqrt 3 } \cr} } \right. \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\;\;\;\;\;\;\;\;\;\;\, \Leftrightarrow \left[ {\matrix{{x = {\pi \over 3} + k\pi } \cr {x = \alpha + k\pi } \cr} } \right.\,\,k \in\mathbb Z \cr & \,\,\,\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\text{ trong đó}\,\tan \alpha = – {8 \over 3} + \sqrt 3 \cr} \)

c. Các giá trị của \(x\) mà \(\cos x = 0\) không là nghiệm phương trình.

Chia hai vế phương trình cho \({\cos ^2}x\) ta được :

\(\eqalign{& {\tan ^2}x + 2\tan x – 2 = {1 \over 2}\left( {1 + {{\tan }^2}x} \right) \cr & \Leftrightarrow {\tan ^2}x + 4\tan x – 5 = 0 \Leftrightarrow \left[ {\matrix{{\tan x = 1} \cr {\tan x = – 5} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = {\pi \over 4} + k\pi } \cr {x = \alpha + k\pi } \cr} } \right.\,\,\,k \in \mathbb Z \cr & \text{ trong đó}\,\tan \alpha = – 5 \cr} \)

 


Câu 34. Sử dụng công thức biến đổi tổng thành tích hoặc tích thành tổng để giải các phương trình sau :

a. \(\cos x\cos 5x = \cos 2x\cos 4x\) ;

b. \(\cos 5x\sin 4x=\cos 3x\sin 2x\) ;

c. \(\sin 2x + \sin 4x = \sin 6x\) ;

d. \(sin x + \sin 2x = \cos x + \cos 2x\)

a. Ta có:

\(\eqalign{& \cos x\cos 5x = \cos 2x\cos 4x \cr & \Leftrightarrow {1 \over 2}\left( {\cos 6x + \cos 4x} \right) = {1 \over 2}\left( {\cos 6x + \cos 2x} \right) \Leftrightarrow \cos 4x = \cos 2x \cr & \Leftrightarrow \left[ {\matrix{{4x = 2x + k2\pi } \cr {4x = – 2x + k2\pi } \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k\pi } \cr {x = k{\pi \over 3}} \cr} } \right. \Leftrightarrow x = k{\pi \over 3} \,\,(k\in\mathbb Z)\cr} \)

b.

\(\eqalign{& \cos 5x\sin 4x = \cos 3x\sin 2x \Leftrightarrow {1 \over 2}\left( {\sin 9x – \sin x} \right) = {1 \over 2}\left( {\sin 5x – \sin x} \right) \cr & \Leftrightarrow \sin 9x = \sin 5x \Leftrightarrow \left[ {\matrix{{9x = 5x + k2\pi } \cr {9x = \pi – 5x + k2\pi } \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k{\pi \over 2}} \cr {x = {\pi \over {14}} + k{\pi \over 7}} \cr} } \,\,(k\in\mathbb Z) \right. \cr} \)

c.

\(\eqalign{& \sin 2x + \sin 4x = \sin 6x \Leftrightarrow 2\sin 3x\cos x = 2\sin 3x\cos 3x \cr & \Leftrightarrow \sin 3x\left( {\cos x – \cos 3x} \right) = 0 \Leftrightarrow \left[ {\matrix{{\sin 3x = 0} \cr {\cos x = \cos 3x} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k{\pi \over 3}} \cr {x = k\pi } \cr {x = k{\pi \over 2}} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k{\pi \over 3}} \cr {x = k{\pi \over 2}} \cr} }  \,\,(k\in\mathbb Z)\right. \cr} \)

d.

\(\eqalign{& \sin x + \sin 2x = \cos x + \cos 2x \Leftrightarrow 2\sin {{3x} \over 2}\cos {x \over 2} = 2\cos {{3x} \over 2}\cos {x \over 2} \cr & \Leftrightarrow \cos {x \over 2}\left( {\sin {{3x} \over 2} – \cos {{3x} \over 2}} \right) = 0 \Leftrightarrow \left[ {\matrix{{\cos {x \over 2} = 0} \cr {\sin {{3x} \over 2} = \cos {{3x} \over 2}} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{{x \over 2} = {\pi \over 2} + k\pi } \cr {\tan {{3x} \over 2} = 1} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = \pi + k2\pi } \cr {x = {\pi \over 6} + k{{2\pi } \over 3}} \cr} } \right.\left( {k \in\mathbb Z} \right) \cr} \)

 


Câu 35. Dùng công thức hạ bậc để giải các phương trình sau :

a.  \({\sin ^2}4x + {\sin ^2}3x = {\sin ^2}2x + {\sin ^2}x\)

b.  \({\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x + {\cos ^2}4x = 2\)

Advertisements (Quảng cáo)

a.

\(\eqalign{& {\sin ^2}4x + {\sin ^2}3x = {\sin ^2}2x + {\sin ^2}x \cr & \Leftrightarrow {1 \over 2}\left( {1 – \cos 8x} \right) + {1 \over 2}\left( {1 – \cos 6x} \right) = {1 \over 2}\left( {1 – \cos 4x} \right) + {1 \over2}\left( {1 – \cos 2x} \right) \cr & \Leftrightarrow \cos 8x + \cos 6x = \cos 4x + \cos 2x \cr & \Leftrightarrow \cos 7x\cos x = \cos 3x\cos x \cr & \Leftrightarrow \cos x\left( {\cos 7x – \cos 3x} \right) = 0 \cr & \Leftrightarrow \left[ {\matrix{{\cos x = 0} \cr {\cos 7x = \cos 3x} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = {\pi \over 2} + k\pi } \cr {x = k{\pi \over 2}} \cr {x = k{\pi \over 5}} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k{\pi \over 2}} \cr {x = k{\pi \over 5}} \cr} } \right.\,\,\,k \in\mathbb Z \cr} \)

b. Ta có:

\(\eqalign{& {\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x + {\cos ^2}4x = 2 \cr & \Leftrightarrow {{1 + \cos 2x} \over 2} + {{1 + \cos 4x} \over 2} + {{1 + \cos 6x} \over 2} + {{1 + \cos 8x} \over 2} = 2 \cr & \Leftrightarrow \left( {\cos 2x + \cos 4x} \right) + \left( {\cos 6x + \cos 8x} \right) = 0 \cr & \Leftrightarrow 2\cos 3x\cos x + 2\cos 7x\cos x = 0 \cr & \Leftrightarrow \cos x\left( {\cos 3x + \cos 7x} \right) = 0 \cr & \Leftrightarrow 2\cos x\cos 5x\cos 2x = 0 \Leftrightarrow \left[ {\matrix{{\cos x = 0} \cr {\cos 2x = 0} \cr {\cos 5x = 0} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = {\pi \over 2} + k\pi } \cr {x = {\pi \over 4} + k{\pi \over 2}} \cr {x = {\pi \over {10}} + k{\pi \over 5}} \cr} } \right.\,\,\left( {k \in\mathbb Z} \right) \cr} \)

 


Câu 36. Giải các phương trình sau :

a.  \(\tan {x \over 2} = \tan x\)

b.  \(\tan \left( {2x + 10^\circ } \right) + \cot x = 0\)

c.  \(\left( {1 – \tan x} \right)\left( {1 + \sin 2x} \right) = 1 + \tan x\)

d.  \(\tan x + \tan 2x = \sin 3x\cos x\)

e.  \(\tan x + \cot 2x = 2\cot 4x\)

a. ĐKXĐ:  \(\left\{ {\matrix{{\cos {x \over 2} \ne 0} \cr {\cos x \ne 0} \cr} } \right.\)

Ta có:\(\tan {x \over 2} = \tan x \Leftrightarrow x = {x \over 2} + k\pi \Leftrightarrow x = k2\pi \,\) (nhận)

b. ĐKXĐ:  \(\left\{ {\matrix{{\cos \left( {2x + 10^\circ } \right) \ne 0} \cr {\sin x \ne 0} \cr} } \right.\)

Ta có:

\(\eqalign{
& \tan \left( {2x + 10^\circ } \right) + \cot x = 0 \Leftrightarrow \tan \left( {2x + 10^\circ } \right) = \tan \left( {90^\circ + x} \right) \cr
& \Leftrightarrow 2x + 10^\circ = 90^\circ + x + k180^\circ \Leftrightarrow x = 80^\circ + k180^\circ \cr} \)

Hiển nhiên \(x = 80^0 + k180^0\) thỏa mãn ĐKXĐ.

Vậy phương trình đã cho có các nghiệm là \(x = 80^0 + k180^0\)

c. Đặt \(t = \tan x\), với điều kiện \(\cos x ≠ 0\).

Ta có:  \(\sin 2x = {{2\tan x} \over {1 + {{\tan }^2}x}} = {{2t} \over {1 + {t^2}}}\)

Do đó :  \(1 + \sin 2x = 1 + {{2t} \over {1 + {t^2}}} = {{{{\left( {1 + t} \right)}^2}} \over {1 + {t^2}}}\)

Vậy ta có phương trình:

\(\eqalign{& \left( {1 – t} \right){{{{\left( {1 + t} \right)}^2}} \over {1 + {t^2}}} = 1 + t \cr & \Leftrightarrow \left( {1 – t} \right){\left( {1 + t} \right)^2} = \left( {1 + t} \right)\left( {1 + {t^2}} \right)\Leftrightarrow 2{t^2}\left( {1 + t} \right) = 0 \cr & \Leftrightarrow \left[ {\matrix{{t = 0} \cr {t = – 1} \cr} } \right. \Leftrightarrow \left[ {\matrix{{\tan x = 0} \cr {\tan x = – 1} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k\pi } \cr {x = – {\pi \over 4} + k\pi } \cr} } \right. \cr} \)

d. ĐKXĐ :\(\cos x \ne 0\,\text{ và }\,\cos 2x \ne 0.\) Với điều kiện đó, ta có :

\(\eqalign{& \tan x + \tan 2x = \sin 3x\cos x \cr & \Leftrightarrow {{\sin 3x} \over {\cos x\cos 2x}} = \sin 3x\cos x \cr & \Leftrightarrow \sin 3x\left( {{1 \over {\cos x\cos 2x}} – \cos x} \right) = 0 \cr & \Leftrightarrow \left[ {\matrix{{\sin 3x = 0} \cr {{1 \over {\cos x\cos 2x}} = \cos x} \cr} } \right. \cr & .\sin 3x = 0 \Leftrightarrow x = k{\pi \over 3} \cr & .{1 \over {\cos x\cos 2x}} = \cos x \Leftrightarrow {\cos ^2}x\cos 2x = 1 \Leftrightarrow \left( {1 + \cos 2x} \right)\cos 2x = 2 \cr & \Leftrightarrow {\cos ^2}2x + \cos 2x – 2 = 0 \cr & \Leftrightarrow \cos 2x = 1 \Leftrightarrow x = k\pi \cr} \)

Vậy phương trình có nghiệm  \(x = k{\pi \over 3}\left( {k \in \mathbb Z} \right)\)

e. ĐKXĐ :\(\cos x \ne 0,\sin 2x \ne 0\,va\,\sin 4x \ne 0.\) Tuy nhiên chỉ cần \(\sin 4x ≠ 0\) là đủ (vì \(\sin 4x = 2\sin2x\cos2x = 4\sin x\cos x\cos2x\)). Với điều kiện đó ta có :

\(\eqalign{& \tan x + \cot 2x = 2\cot 4x \cr & \Leftrightarrow {{\sin x} \over {\cos x}} + {{\cos 2x} \over {\sin 2x}} = {{2\cos 4x} \over {\sin 4x}} \cr & \Leftrightarrow {{\sin x\sin 2x + \cos x\cos 2x} \over {\cos x\sin 2x}} = {{2\cos 4x} \over {2\sin 2x\cos 2x}} \cr & \Leftrightarrow {{\cos \left( {2x – x} \right)} \over {\cos x}} = {{\cos 4x} \over {\cos 2x}} \cr & \Leftrightarrow \cos 4x = \cos 2x \cr & \Leftrightarrow 4x = \pm 2x + k2\pi \Leftrightarrow \left[ {\matrix{{x = k\pi } \cr {x = k{\pi \over 3}} \cr} } \right. \Leftrightarrow x = k{\pi \over 3} \cr} \)

Để là nghiệm, các giá trị này còn phải thỏa mãn điều kiện \(\sin4x ≠ 0\).

Ta có:

– Nếu \(k\) chia hết cho 3, tức là \(k = 3m\) (\(m\in\mathbb Z\)) thì :

– Nếu \(k\) không chia hết cho 3, tức là \(k = 3m ± 1\) (\(m\in\mathbb Z\))  thì :

\(\sin 4x = \sin \left( { \pm {{4\pi } \over 3} + 4m\pi } \right) = \pm \sin {\pi \over 3} = \pm {{\sqrt 3 } \over 2} \ne 0\)

Vậy nghiệm của phương trình là \(x = k{\pi \over 3}\) với \(k\) nguyên và không chia hết cho 3.


Câu 37. Mùa xuân ở Hội Lim (tỉnh Bắc Ninh) thường có trò chơi đu. Khi người chơi đu nhún đều, cây đu sẽ đưa người chơi đu dao động qua lại vị trí cân bằng. Nghiên cứu trò chơi này, người ta thấy khoảng cách h (tính bằng mét) từ người chơi đu đến vị trí cân bằng (h. 1.32) được biểu diễn qua thời gian t (t ≥ 0 và được tính bằng giây) bởi hệ thức \(h = |d|\) với \(d = 3\cos \left[ {{\pi \over 3}\left( {2t – 1} \right)} \right]\) , trong đó ta quy ước rằng \(d > 0\) khi vị trí cân bằng ở về phía sau lưng người chơi đu và \(d < 0\) trong trường hợp trái lại.

a. Tìm các thời điểm trong vòng 2 giây đầu tiên mà người chơi đu ở xa vị trí cân bằng nhất.

b. Tìm các thời điểm trong vòng 2 giây đầu tiên mà người chơi đu cách vị trí cân bằng 2 mét (tính chính xác đến

\({1 \over {100}}\) giây).

a. Người chơi đu ở xa vị trí cân bằng nhất khi  \(\cos \left[ {{\pi \over 3}\left( {2t – 1} \right)} \right] = \pm 1\)

Ta có:

\(\eqalign{
& \cos \left[ {{\pi \over 3}\left( {2t – 1} \right)} \right] = \pm 1 \Leftrightarrow \sin \left[ {{\pi \over 3}\left( {2t – 1} \right)} \right] = 0 \cr
& \Leftrightarrow {\pi \over 3}\left( {2t – 1} \right) = k\pi \Leftrightarrow t = {1 \over 2}\left( {3k + 1} \right) \cr} \)

Ta cần tìm k nguyên để \(0 ≤ t ≤ 2\)

\(0 \le t \le 2 \Leftrightarrow 0 \le {1 \over 2}\left( {3k + 1} \right) \le 2 \Leftrightarrow – {1 \over 3} \le k \le 1 \Leftrightarrow k \in \left\{ {0;1} \right\}\)

Với \(k = 0\) thì \(t = {1 \over 2}.\) Với \(k = 1\) thì \(t = 2\). Vậy trong 2 giây đầu tiên, người chơi đu ở xa vị trí cân bằng nhất vào các thời điểm \({1 \over 2}\) giây và 2 giây.

b. Người chơi đu cách vị trí cân bằng 2 mét khi  \(3\cos \left[ {{\pi \over 3}\left( {2t – 1} \right)} \right] = \pm 2\)

Ta có:

\(\eqalign{
& 3\cos \left[ {{\pi \over 3}\left( {2t – 1} \right)} \right] = \pm 2 \cr
& \Leftrightarrow {\cos ^2}\left[ {{\pi \over 3}\left( {2t – 1} \right)} \right] = {4 \over 9} \cr
& \Leftrightarrow 1 + \cos \left[ {{{2\pi } \over 3}\left( {2t – 1} \right)} \right] = {9 \over 8} \cr
& \Leftrightarrow \cos \left[ {{{2\pi } \over 3}\left( {2t – 1} \right)} \right] = – {1 \over 9} \cr
& \Leftrightarrow {{2\pi } \over 3}\left( {2t – 1} \right) = \pm \alpha + k2\pi \cr
& \Leftrightarrow t = \pm {{3\alpha } \over {4\pi }} + {1 \over 2} + {{3k} \over 2}\,\left( {voi\,\cos \alpha = – {1 \over 9}} \right) \cr} \)

Ta tìm k nguyên để \(0 ≤ t ≤ 2\)

– Với \(t = {{3\alpha } \over {4\pi }} + {1 \over 2} + {{3k} \over 2},\) ta có :

\(0 \le t \le 2 \Leftrightarrow – {1 \over 3} – {\alpha \over {2\pi }} \le k \le 1 – {\alpha \over {2\pi }}\)

Với \(\cos \alpha = – {1 \over 9}\) ta chọn \(α ≈ 1,682\)

Khi đó \(– 0,601 < k < 0,732\) suy ra \(k = 0\) và \(t ≈ 0,90\)

– Với \(t = – {{3\alpha } \over {4\pi }} + {1 \over 2} + {{3k} \over 2},\) ta có :

\(0 \le t \le 2 \Leftrightarrow – {1 \over 3} + {\alpha \over {2\pi }} \le k \le 1 + {\alpha \over {2\pi }}\)

Vì \(α ≈ 1,682\) nên \(– 0,066 < k < 1,267\), suy ra \(k \in {\rm{\{ }}0;1\} \)

Với \(k = 0\), ta có \(t ≈ 0,10\); với \(k = 1\), ta có \(t ≈ 1,60\)

Kết luận : Trong khoảng 2 giây đầu tiên, có ba thời điểm mà người chơi đu cách vị trí cân bằng 2 mét, đó là \(t ≈ 0,10\) giây; \(t ≈ 0,90\) giây và \(t ≈ 1,60\) giây.


Câu 38. Giải các phương trình sau :

a.  \({\cos ^2}x – 3{\sin ^2}x = 0\)

b.  \({\left( {\tan x + \cot x} \right)^2} – \left( {\tan x + \cot x} \right) = 2\)

c.  \(\sin x + {\sin ^2}{x \over 2} = 0,5\)

a.

\(\eqalign{
& {\cos ^2}x – 3{\sin ^2}x = 0 \cr
& \Leftrightarrow {{1 + \cos 2x} \over 2} – {{3\left( {1 – \cos 2x} \right)} \over 2} = 0 \cr
& \Leftrightarrow \cos 2x = {1 \over 2} \Leftrightarrow 2x = \pm {\pi \over 3} + k2\pi \cr
& \Leftrightarrow x = \pm {\pi \over 6} + k\pi \cr} \)

b. Đặt \(t = \tan x + \cot x\) với điều kiện \(|t| = |\tan x| + |\cot x| ≥ 2\) (BĐT Cosi)

Ta có:

\(\eqalign{& {t^2} – t = 2 \Leftrightarrow {t^2} – t – 2 = 0 \Leftrightarrow \left[ {\matrix{{t = – 1\,\left( \text{loại} \right)} \cr {t = 2} \cr} } \right. \cr & t = 2 \Leftrightarrow \tan x + \cot x = 2 \Leftrightarrow \tan x = {1 \over {\tan x}} = 2 \cr & \Leftrightarrow {\tan ^2}x – 2\tan x + 1 = 0 \cr & \Leftrightarrow \tan x = 1 \Leftrightarrow x = {\pi \over 4} + k\pi \cr} \)

c.

\(\eqalign{
& \sin x + {\sin ^2}{x \over 2} = 0,5 \cr
& \Leftrightarrow \sin x + {{1 – \cos x} \over 2} = {1 \over 2} \Leftrightarrow \sin x = {1 \over 2}\cos x \cr
& \Leftrightarrow \tan x = {1 \over 2} \Leftrightarrow x = \alpha + k\pi \,\text{ trong đó }\,\tan \alpha = {1 \over 2} \cr} \)

 


Câu 39. Chứng minh rằng các phương trình sau đây vô nghiệm :

a. \(\sin x – 2\cos x = 3\)

b. \(5\sin2x + \sin x + \cos x + 6 = 0\)

Hướng dẫn b. Đặt \(\sin x + \cos x = t\)

a.

\(\sin x – 2\cos x = 3 \Leftrightarrow {1 \over {\sqrt 5 }}\sin x – {2 \over {\sqrt 5 }}\cos x = {3 \over {\sqrt 5 }} \Leftrightarrow \sin \left( {x – \alpha } \right) = {3 \over {\sqrt 5 }}\) trong đó \(α\) là số thỏa mãn \(\cos \alpha = {1 \over {\sqrt 5 }}\,\text{ và }\,\sin \alpha = {2 \over {\sqrt 5 }}.\) Phương trình cuối cùng vô nghiệm do \({3 \over {\sqrt 5 }} > 1,\) nên phương trình đã cho vô nghiệm.

b. Trong phương trình \(5\sin 2x + \sin x + \cos x + 6 = 0\), ta đặt \(t = \sin x + \cos x\) với điều kiện \(\left| t \right| \le \sqrt 2 \) thì được phương trình \(5{t^2} + t + 1 = 0.\) Phương trình này vô nghiệm nên phương trình đã cho vô nghiệm.


Câu 40. Tìm các nghiệm của mỗi phương trình sau trong khoảng đã cho (khi cần tính gần đúng thì tính chính xác đến \({1 \over {10}}\) giây)

a.  \(2{\sin ^2}x – 3\cos x = 2,0^\circ \le x \le 360^\circ \)

b.  \(\tan x + 2\cot x = 3,180^\circ \le x \le 360^\circ \)

a.

\(\eqalign{
& 2{\sin ^2}x – 3\cos x = 2 \Leftrightarrow 2{\cos ^2}x + 3\cos x = 0 \cr
& \Leftrightarrow \cos x = 0\,\left( {\text{ loại }\,\cos x = – {3 \over 2}} \right) \cr
& \Leftrightarrow x = 90^\circ + k180^\circ ,\,k \in \mathbb Z \cr} \)

Vậy với điều kiện \(0^0≤ x ≤ 360^0\), phương trình có hai nghiệm là \(x = 90^0\) và \(x = 270^0\).

b. ĐKXĐ : \(\sin x ≠ 0\) và \(\cos x ≠ 0\). Ta có :

\(\tan x + 2\cot x = 3 \Leftrightarrow {\tan ^2}x – 3\tan x + 2 = 0 \Leftrightarrow \left[ {\matrix{{\tan x = 1} \cr {\tan x = 2} \cr} } \right.\)

+) \( \tan x = 1 ⇔ x = 45^0 + k180^0\). Có một nghiệm thỏa mãn \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\), ứng với \(k = 1\) là \(x = 225^0\)

+) \( \tan x = 2 ⇔ x = α + k180^0\) với \(\tan α = 2\). Ta có thể chọn \(\alpha  \approx {63^0}265,8\)

Vậy có một nghiệm (gần đúng) thỏa mãn \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\) là :

\(x = \alpha  + {180^0} \approx {243^0}265,8\)

Kết luận : Với điều kiện \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\), phương trình có hai nghiệm \(x = 225^0\) và \(x \approx {243^0}265,8\).


Câu 41. Giải các phương trình sau :

a.  \(3{\sin ^2}x – \sin 2x – {\cos ^2}x = 0\)

b.  \(3{\sin ^2}2x – \sin 2x\cos 2x – 4{\cos ^2}2x = 2\)

c.  \(2{\sin ^2}x + \left( {3 + \sqrt 3 } \right)\sin x\cos x + \left( {\sqrt 3 – 1} \right){\cos ^2}x = – 1\)

a. Cách 1 : (chia hai vế cho \({\cos ^2}x\)). Chú ý rằng những giá trị của x mà \(\cos x = 0\) không là nghiệm của phương trình. Do đó :

\(\eqalign{& 3{\sin ^2}x – \sin 2x – {\cos ^2}x = 0 \cr & \Leftrightarrow 3{\tan ^2}x – 2\tan x – 1 = 0 \Leftrightarrow \left[ {\matrix{{\tan x = 1} \cr {\tan x = – {1 \over 3}} \cr} } \right. \cr} \)

Từ đó suy ra các nghiệm của phương trình là :

\(x = {\pi \over 4} + k\pi \,va\,x = \alpha + k\pi \,\text{ trong đó }\,\tan \alpha = – {1 \over 3}\)

Cách 2 : (dùng công thức hạ bậc)

\(\eqalign{& 3{\sin ^2}x – \sin 2x – {\cos ^2}x = 0 \cr & \Leftrightarrow {{3\left( {1 – \cos 2x} \right)} \over 2} – \sin 2x – {{1 + \cos 2x} \over 2} = 0 \cr & \Leftrightarrow – 2\sin 2x – 4\cos 2x + 2 = 0 \cr & \Leftrightarrow \sin 2x + 2\cos 2x = 1 \cr & \Leftrightarrow {1 \over {\sqrt 5 }}\sin 2x + {2 \over {\sqrt 5 }}\cos 2x = {1 \over {\sqrt 5 }} \cr & \Leftrightarrow \cos \left( {2x – \alpha } \right) = \cos \left( {{\pi \over 2} – \alpha } \right) \cr & \text{ trong đó }\,\alpha \,\text{ là số thỏa mãn }\,\sin \alpha = {1 \over {\sqrt 5 }}\,\text{ và }\,\cos \alpha = {2 \over {\sqrt 5 }}.\text{ Ta có }\,: \cr & \cos \left( {2x – \alpha } \right) = \cos \left( {{\pi \over 2} – \alpha } \right) \cr & \Leftrightarrow 2x – \alpha = \pm \left( {{\pi \over 2} – \alpha } \right) + k2\pi \cr
& \Leftrightarrow \left[ {\matrix{{x = {\pi \over 4} + k\pi } \cr {x = \alpha – {\pi \over 4} + k\pi } \cr} } \right.\left( {k \in \mathbb Z} \right) \cr} \)

b. Những giá trị của x mà \(\cos2x = 0\) không là nghiệm phương trình. Chia hai vế phương trình cho \({\cos ^2}2x\) ta được :

\(\eqalign{& 3{\tan ^2}2x – \tan 2x – 4 = 2\left( {1 + {{\tan }^2}2x} \right) \cr & \Leftrightarrow {\tan ^2}2x – \tan 2x – 6 = 0 \Leftrightarrow \left[ {\matrix{{\tan 2x = – 2} \cr {\tan 2x = 3} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{x = {\alpha \over 2} + k{\pi \over 2}} \cr {x = {\beta \over 2} + k{\pi \over 2}} \cr} } \right.\,\text{ trong đó }\,\tan 2\alpha = – 2\,\text{ và }\,\tan 2\beta = 3 \cr} \)

c. Với giá trị \(x\) mà \(\cos x = 0\) không là nghiệm phương trình chia hai vế phương trình cho \({\cos ^2}x\) ta được :

\(\eqalign{& 2{\tan ^2}x + \left( {3 + \sqrt 3 } \right)\tan x + \sqrt 3 – 1 = – \left( {1 + {{\tan }^2}x} \right) \cr & \Leftrightarrow 3{\tan ^2}x + \left( {3 + \sqrt 3 } \right)\tan x + \sqrt 3 = 0 \cr & \Leftrightarrow \left[ {\matrix{{\tan x = – 1} \cr {\tan x = – {{\sqrt 3 } \over 3}} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = – {\pi \over 4} + k\pi } \cr {x = – {\pi \over 6} + k\pi } \cr} } \right.\,\left( {k \in\mathbb Z} \right) \cr} \)


Câu 42. Giải các phương trình sau :

a.  \(\sin x + \sin 2x + \sin 3x = \cos x + \cos 2x + \cos 3x\)

b.  \(\sin x = \sqrt 2 \sin 5x – \cos x\)

c.  \({1 \over {\sin 2x}} + {1 \over {\cos 2x}} = {2 \over {\sin 4x}}\)

d.  \(\sin x + \cos x = {{\cos 2x} \over {1 – \sin 2x}}\)

a. Ta có:

\(\eqalign{& \sin x + \sin 2x + \sin 3x = \cos x + \cos 2x + \cos 3x \cr & \Leftrightarrow \left( {\sin x + \sin 3x} \right) + \sin 2x = \left( {\cos x + \cos 3x} \right) + \cos 2x \cr & \Leftrightarrow 2\sin 2x\cos x + \sin 2x = 2\cos 2x\cos x + \cos 2x \cr & \Leftrightarrow \sin 2x\left( {2\cos x + 1} \right) – \cos 2x\left( {2\cos x + 1} \right) = 0 \cr & \Leftrightarrow \left( {2\cos x + 1} \right)\left( {\sin 2x – \cos 2x} \right) = 0 \cr & \Leftrightarrow \left[ {\matrix{{2\cos x + 1 = 0} \cr {\sin 2x – \cos 2x = 0} \cr} } \right. \Leftrightarrow \left[ {\matrix{{\cos x = – {1 \over 2}} \cr {\tan 2x = 1} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{x = \pm {{2\pi } \over 3} + k2\pi } \cr {x = {\pi \over 8} + k{\pi \over 2}} \cr} } \right.,k \in\mathbb Z \cr} \)

b.

\(\eqalign{& \sin x = \sqrt 2 \sin 5x – \cos x \cr & \Leftrightarrow = {1 \over {\sqrt 2 }}\sin x + {1 \over {\sqrt 2 }}\cos x = \sin 5x \cr & \Leftrightarrow \sin \left( {x + {\pi \over 4}} \right) = \sin 5x \Leftrightarrow \left[ {\matrix{{5x = x + {\pi \over 4} + k2\pi } \cr {5x = {{3\pi } \over 4} – x + k2\pi } \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{x = {\pi \over {16}} + k{\pi \over 2}} \cr {x = {\pi \over 8} + k{\pi \over 3}} \cr} ,k \in\mathbb Z} \right. \cr} \)

c. ĐKXĐ : \(\sin4x ≠ 0\) (điều kiện này đã bao gồm \(\sin 2x ≠ 0\) và \(\cos2x ≠ 0\)).

Với điều kiện đó, ta có thể nhân hai vế của phương trình với \(\sin4x\) :

\(\eqalign{& {1 \over {\sin 2x}} + {1 \over {\cos 2x}} = {2 \over {\sin 4x}} \cr & \Leftrightarrow {1 \over {\sin 2x}} + {1 \over {\cos 2x}} = {1 \over {\sin 2x\cos 2x}} \cr & \Leftrightarrow \sin 2x + \cos 2x = 1 \Leftrightarrow \sin \left( {2x + {\pi \over 4}} \right) = \sin {\pi \over 4} \cr & \Leftrightarrow \left[ {\matrix{{2x = k2\pi } \cr {2x = {\pi \over 2} + k2\pi } \cr} } \right. \cr} \)

Ta thấy : Nếu \(2x = k2π\) thì \(\sin2x = 0\); nếu \(2x = {\pi \over 2} + k2\pi \) thì \(\cos2x = 0\), nên các giá trị đó của \(x\) đều không thỏa mãn ĐKXĐ. Vậy phương trình đã cho vô nghiệm.

d. ĐKXĐ : \(\sin2x ≠ 1\). Với điều kiện đó, ta có:

\(\eqalign{& \sin x + \cos x = {{\cos 2x} \over {1 – \sin 2x}} \cr & \Leftrightarrow \sin x + \cos x = {{{{\cos }^2}x – {{\sin }^2}x} \over {{{\left( {\cos x – \sin x} \right)}^2}}} \cr & \Leftrightarrow \left( {\sin x + \cos x} \right)\left( {1 – {1 \over {\cos x – \sin x}}} \right) = 0 \cr & +)\,\,\sin x + \cos x = 0 \Leftrightarrow x = – {\pi \over 4} + k\pi \cr & +)\,\,{1 \over {\cos x – \sin x}} = 1 \Leftrightarrow \cos x – \sin x = 1 \cr & \Leftrightarrow \cos \left( {x + {\pi \over 4}} \right) = {1 \over {\sqrt 2 }} \Leftrightarrow \left[ {\matrix{{x = k2\pi \,\left( \text{nhận} \right)} \cr {x = – {\pi \over 2} + k2\pi \,\left( \text{nhận}\right)} \cr} } \right. \cr} \)

Advertisements (Quảng cáo)