Trang Chủ Sách bài tập lớp 9 SBT Toán 9

Bài 27, 28, 29 trang 9, 10 SBT Toán 9 tập: So sánh (không dùng bảng số hoặc máy tính bỏ túi).

Bài 3. Liên hệ giữa phép nhân và phép khai phương – SBT Toán lớp 9: Giải bài 27, 28, 29 trang 9, 10 Sách bài tập Toán 9 tập 1. Câu 27: Rút gọn…

Câu 27: Rút gọn:

a) \({{\sqrt 6  + \sqrt {14} } \over {2\sqrt 3  + \sqrt {28} }}\);

b) \({{\sqrt 2  + \sqrt 3  + \sqrt 6  + \sqrt 8  + \sqrt {16} } \over {\sqrt 2  + \sqrt 3  + \sqrt 4 }}\).

a) \(\eqalign{
& {{\sqrt 6 + \sqrt {14} } \over {2\sqrt 3 + \sqrt {28} }} = {{\sqrt {2.3} + \sqrt {2.7} } \over {2\sqrt 3 + \sqrt 4 .\sqrt 7 }} \cr
& = {{\sqrt 2 \left( {\sqrt 3 + \sqrt 7 } \right)} \over {2\left( {\sqrt 3 + \sqrt 7 } \right)}} = {{\sqrt 2 } \over 2} \cr} \)

b) \(\eqalign{
& {{\sqrt 2 + \sqrt 3 + \sqrt 6 + \sqrt 8 + \sqrt {16} } \over {\sqrt 2 + \sqrt 3 + \sqrt 4 }} \cr
& = {{\sqrt 2 + \sqrt 3 + \sqrt 6 + \sqrt 8 + 4} \over {\sqrt 2 + \sqrt 3 + \sqrt 4 }} \cr} \)

\(= {{\sqrt 2  + \sqrt 3  + \sqrt 4  + \sqrt 4  + \sqrt 6  + \sqrt 8 } \over {\sqrt 2  + \sqrt 3  + \sqrt 4 }}\)

\( = {{\left( {\sqrt 2  + \sqrt 3  + \sqrt 4 } \right) + \sqrt 2 \left( {\sqrt 2  + \sqrt 3  + \sqrt 4 } \right)} \over {\sqrt 2  + \sqrt 3  + \sqrt 4 }}\)

\(= {{\left( {\sqrt 2  + \sqrt 3  + \sqrt 4 } \right)\left( {1 + \sqrt 2 } \right)} \over {\sqrt 2  + \sqrt 3  + \sqrt 4 }} = 1 + \sqrt 2 \)


Câu 28: So sánh (không dùng bảng số hoặc máy tính bỏ túi):

a) \(\sqrt 2  + \sqrt 3 \) và \(\sqrt {10} \);

b) \(\sqrt 3  + 2\) và \(\sqrt 2  + \sqrt 6 \);

c) 16 và \(\sqrt {15} .\sqrt {17} \);

d) 8 và \(\sqrt {15}  + \sqrt {17} \).

a)  \(\sqrt 2  + \sqrt 3 \) và \(\sqrt {10} \)

Ta có:

\(\eqalign{
& {\left( {\sqrt 2 + \sqrt 3 } \right)^2} = 2 + 2\sqrt 6 + 3 \cr
& = 5 + 2\sqrt 6 \cr} \)

\({\left( {\sqrt {10} } \right)^2} = 10 = 5 + 5\)

So sánh \(2\sqrt 6 \) và 5:

Advertisements (Quảng cáo)

Ta có: \({\left( {2\sqrt 6 } \right)^2} = {2^2}.{\left( {\sqrt 6 } \right)^2} = 4.6 = 24\)

\({5^2} = 25\)

Vì \({\left( {2\sqrt 6 } \right)^2} < {5^2}\) nên \(2\sqrt 6  < 5\)

Vậy:

\(\eqalign{
& 5 + 2\sqrt 6 < 5 + 5 \cr
& \Rightarrow {\left( {\sqrt 2 + \sqrt 3 } \right)^2} < {\left( {\sqrt {10} } \right)^2} \cr
& \Rightarrow \sqrt 2 + \sqrt 3 < \sqrt {10} \cr} \)

b) \(\sqrt 3  + 2\) và \(\sqrt 2  + \sqrt 6 \)

Ta có:

\({\left( {\sqrt 3  + 2} \right)^2} = 3 + 4\sqrt 3  + 4 = 7 + 4\sqrt 3 \)

\(\eqalign{
& {\left( {\sqrt 2 + \sqrt 6 } \right)^2} = 2 + 2\sqrt {12} + 6 \cr
& = 8 + 2\sqrt {4.3} = 8 + 2.\sqrt 4 .\sqrt 3 = 8 + 4\sqrt 3 \cr} \)

Vì \(7 + 4\sqrt 3  < 8 + 4\sqrt 3 \) nên \({\left( {\sqrt 3  + 2} \right)^2} < {\left( {\sqrt 2  + \sqrt 6 } \right)^2}\)

Vậy \(\sqrt 3  + 2\) < \(\sqrt 2  + \sqrt 6 \)

c) 16 và \(\sqrt {15} .\sqrt {17} \)

Ta có:

Advertisements (Quảng cáo)

\(\eqalign{
& \sqrt {15} .\sqrt {17} = \sqrt {16 – 1} .\sqrt {16 + 1} \cr
& = \sqrt {(16 – 1)(16 + 1)} = \sqrt {{{16}^2} – 1} \cr} \)

\(16 = \sqrt {{{16}^2}} \)

Vì \(\sqrt {{{16}^2} – 1}  < \sqrt {{{16}^2}} \) nên \(16 > \sqrt {15} .\sqrt {17} \)

Vậy \(16 > \sqrt {15} .\sqrt {17} \).

d) 8 và \(\sqrt {15}  + \sqrt {17} \)

Ta có: \({8^2} = 64 = 32 + 32\)

\(\eqalign{
& {\left( {\sqrt {15} + \sqrt {17} } \right)^2} = 15 + 2\sqrt {15.17} + 17 \cr
& = 32 + 2\sqrt {15.17} \cr} \)

So sánh 16 và \(\sqrt {15.17} \)

Ta có:

\(\eqalign{
& \sqrt {15.17} = \sqrt {(16 – 1)(16 + 1)} \cr
& = \sqrt {{{16}^2} – 1} < \sqrt {{{16}^2}} \cr} \)

Vì \(16 > \sqrt {15.17} \) nên \(32 > 2\sqrt {15.17} \)

Suy ra:

\(\eqalign{
& 64 > 32 + 32 + 2.\sqrt {15.17} \cr
& \Rightarrow {8^2} > {\left( {\sqrt {15} + \sqrt {17} } \right)^2} \cr} \)

Vậy \(8 > \sqrt {15}  + \sqrt {17} \).


Câu 29:  So sánh (không dùng bảng số hoặc máy tính bỏ túi):

\(\sqrt {2003}  + \sqrt {2005} \) và \(2\sqrt {2004} \)

Ta có:

\(\eqalign{
& {\left( {2\sqrt {2004} } \right)^2} = 4.2004 \cr
& = 4008 + 2.2004 \cr} \)

\(\eqalign{
& {\left( {\sqrt {2003} + \sqrt {2005} } \right)^2} \cr
& = 2003 + 2\sqrt {2003.2005} + 2005 \cr} \)

\( = 4008 + 2\sqrt {2003.2005} \)

So sánh 2004 và \(\sqrt {2003.2005} \)

Ta có:

\(\eqalign{
& \sqrt {2003.2005} \cr
& = \sqrt {(2004 – 1)(2004 + 1)} \cr
& = \sqrt {{{2004}^2} – 1} < \sqrt {{{2004}^2}} \cr} \)

Suy ra:

\(\eqalign{
& 2004 > \sqrt {2003.2005} \cr
& \Rightarrow 2.2004 > 2.\sqrt {2003.2005} \cr} \)

\( \Rightarrow 4008 + 2.2004 > 4008 + 2\sqrt {2003.2005} \)

\( \Rightarrow {\left( {2\sqrt {2004} } \right)^2} > {\left( {\sqrt {2003}  + \sqrt {2005} } \right)^2}\)

Vậy \(2\sqrt {2004}  > \sqrt {2003}  + \sqrt {2005} \).

Advertisements (Quảng cáo)