Trang Chủ Sách bài tập lớp 7 SBT Toán 7

Bài 138, 139, 140, 141 trang 33, 34 SBT Toán lớp 7 tập 1: Tìm giá trị nhỏ nhất của biểu thức A = |x – 2001| + |x – 1|

Bài Ôn tập chương 1 SBT Toán lớp 7 tập 1. Giải bài 138, 139, 140, 141 trang 33, 34 Sách Bài Tập Toán lớp 7 tập 1. Câu 138: Tính…

Câu 138: Tính:

\(E = {{\left( {13{1 \over 4} – 2{5 \over {27}} – 10{5 \over 6}} \right).230{1 \over {25}} + 46{3 \over 4}} \over {\left( {1{3 \over 7} + {{10} \over 3}} \right):\left( {12{1 \over 3} – 14{2 \over 7}} \right)}}\)

\(E = {{\left( {13{1 \over 4} – 2{5 \over {27}} – 10{5 \over 6}} \right).230{1 \over {25}} + 46{3 \over 4}} \over {\left( {1{3 \over 7} + {{10} \over 3}} \right):\left( {12{1 \over 3} – 14{2 \over 7}} \right)}}\)

\(\eqalign{
& = {{\left( {13 – 2 – 10 + {1 \over 4} – {5 \over {27}} – {5 \over 6}} \right).{{5771} \over {25}} + {{187} \over 4}} \over {\left( {{{30} \over {21}} + {{70} \over {21}}} \right):\left( {{{259} \over {21}} – {{300} \over {21}}} \right)}} \cr
& = {{\left( {1 + {{27 – 20 – 90} \over {108}}} \right).{{5751} \over {25}} + {{187} \over 4}} \over {{{100} \over {21}}:{{ – 41} \over {21}}}} \cr} \)

\(\eqalign{
& = {{\left( {{{108} \over {108}} – {{83} \over {108}}} \right).{{5751} \over {25}} + {{187} \over 4}} \over {{{100} \over {21}}.{{ – 21} \over {41}}}} \cr
& = {{{{25} \over {108}}.{{5751} \over {25}} + {{187} \over 4}} \over {{{ – 100} \over {41}}}} \cr
& = \left( {{{213} \over 4} + {{187} \over 4}} \right).{{ – 41} \over {100}} = 100.{{ – 41} \over {100}} \cr} \)

= -41

Câu 139: Tính

\(G = {{4,5:\left[ {47,375 – \left( {26{1 \over 3} – 18.0,75} \right).2,4:0,88} \right]} \over {17,81:1,37 – 23{2 \over 3}:1{5 \over 6}}}\)

\(G = {{4,5:\left[ {47,375 – \left( {26{1 \over 3} – 18.0,75} \right).2,4:0,88} \right]} \over {17,81:1,37 – 23{2 \over 3}:1{5 \over 6}}}\)

\( = {{4,5:\left[ {47,375 – \left( {{{79} \over 3} – 18.{3 \over 4}} \right).2{2 \over 5}:{{22} \over {25}}} \right]} \over {13 – {{71} \over 3}:{{11} \over 6}}}\)

Advertisements (Quảng cáo)

\(\eqalign{
& = {{4,5:\left[ {47{3 \over 8} – \left( {{{158} \over 6} – {{81} \over 6}} \right).{{12} \over 5}:{{22} \over {25}}} \right]} \over {13 – {{142} \over {11}}}} \cr
& = {{4,5:\left[ {47{3 \over 8} – {{77} \over 6}.{{12} \over 5}:{{22} \over {25}}} \right]} \over {{{143} \over {11}} – {{142} \over {11}}}} \cr} \)

\(\eqalign{
& = {{4,5:\left[ {47{3 \over 8} – {{154} \over 5}.{{25} \over {22}}} \right]} \over {{1 \over {11}}}} \cr
& = {{4,5:\left[ {47{3 \over 8} – 35} \right]} \over {{1 \over {11}}}} \cr} \)

\(\eqalign{
& = \left( {4,5:12{3 \over 8}} \right):{1 \over {11}} = 4,5.{8 \over {99}}.{{11} \over 1} \cr
& = {{4,5.8.11} \over {99}} = 4 \cr} \)

Câu 140: Cho x, y ∈ Q. Chứng tỏ rằng:

a) \(\left| {x + y} \right| \le \left| x \right| + \left| y \right|\)

b) \(\left| {x – y} \right| \ge \left| x \right| – \left| y \right|\)

Advertisements (Quảng cáo)

a) Với mọi x, y ∈ Q, ta có:

\(x \le \left| x \right|\) và \( – x \le \left| x \right|;y \le \left| y \right|\) và \(- y \le \left| y \right| \Rightarrow x + y \ge  – \left( {\left| x \right| + \left| y \right|} \right)\)

Suy ra \( – \left( {\left| x \right| + \left| y \right|} \right) \le x + y \le \left| x \right| + \left| y \right|\)

Vậy \(\left| {x + y} \right| \le \left| x \right| + \left| y \right|\)

Dấu “=” xảy ra khi xy ≥ 0.

b) Theo kết quả câu a) ta có: \(\left| {\left( {x – y} \right) + y} \right| \le \left| {x – y} \right| + \left| y \right|\)

\( \Rightarrow \left| x \right| \le \left| {x – y} \right| + \left| y \right| \Rightarrow \left| x \right| – \left| y \right| \le \left| {x – y} \right|\)

Dấu “=” xảy ra khi xy ≥ 0 và \(\left| x \right| \ge \left| y \right|\)

Câu 141: Tìm giá trị nhỏ nhất của biểu thức:

\({\rm{A}} = \left| {x – 2001} \right| + \left| {x – 1} \right|\)

Vì \(\left| {1 – x} \right| = \left| {x – 1} \right|\) nên \(A = \left| {x – 2001} \right| + \left| {x – 1} \right|\)

\( \Rightarrow A = \left| {x – 2001} \right| + \left| {1 – x} \right| \ge \left| {x – 2001 + 1 – x} \right| \)

\(\Rightarrow\) A = 2000

Vậy biểu thức có giá trị nhỏ nhất  A = 2000 khi x – 2001 và 1 – x cùng dấu

Vậy 1 ≤ x ≤ 2001

Advertisements (Quảng cáo)