Bài 2.45 trang 55 SGK Toán 6 KNTT
Cho bảng sau:
a |
9 |
34 |
120 |
15 |
2 987 |
b |
12 |
51 |
70 |
28 |
1 |
ƯCLN(a,b) |
3 |
? |
? |
? |
? |
BCNN(a,b) |
36 |
? |
? |
? |
? |
ƯCLN(a,b) .BCNN(a,b) |
108 |
? |
? |
? |
? |
a.b |
108 |
? |
? |
? |
? |
a) Tìm các số thích hợp thay vào ô trống trong bảng;
b) So sánh tích ƯCLN(a,b) . BCNN(a,b) và a.b.
Em rút ra kết luận gì?
a) +) Ở cột thứ hai:
a = 34 = 2.17; b = 51 = 3.17
⇒ ƯCLN(a; b) = 17 ; BCNN(a; b) = 2.3.17 = 102.
ƯCLN(a, b) . BCNN(a, b) = 17.102 = 1 734.
a.b = 34. 51 = 1 734.
+) Ở cột thứ ba:
a = 120 =23.3.5 ; b = 70 = 2.5.7
⇒ ƯCLN(a; b) = 2. 5 = 10 ; BCNN(a; b) = 23.3.5.7 = 840
ƯCLN(a, b) . BCNN(a, b) = 10. 840 = 8 400.
a.b = 120. 70 = 8 400.
+) Ở cột thứ tư:
a = 15 =3.5; b =\(28 = 2^2.7\)
⇒ ƯCLN(a; b) = 1 ; BCNN(a; b) = \(2^2.3.5.7\)=420
ƯCLN(a, b) . BCNN(a, b) =1. 420 = 420.
a.b = 15. 28 = 420.
+) Ở cột thứ năm:
a = 2 987; b = 1
⇒ ƯCLN(a; b) = 1 ; BCNN(a; b) = 2 987
ƯCLN(a, b) . BCNN(a, b) = 1 . 2 987 = 2 987.
a.b = 2 987 . 1 = 2 987
Ta có bảng sau:
a |
9 |
34 |
120 |
15 |
2 987 |
b |
12 |
51 |
70 |
28 |
1 |
ƯCLN(a, b) |
3 |
17 |
10 |
1 |
1 |
BCNN(a, b) |
36 |
102 |
840 |
420 |
2 987 |
ƯCLN(a, b) .BCNN(a, b) |
108 |
1 734 |
8 400 |
420 |
2 987 |
a.b |
108 |
1 734 |
8 400 |
420 |
2 987 |
b) So sánh: ƯCLN(a, b).BCNN(a, b) = a.b
Em rút ra kết luận: tích của BCNN và ƯCLN của hai số tự nhiên bất kì bằng tích của chúng.
Bài 2.46 Toán 6 trang 55
Tìm ƯCLN và BCNN của:
a) \(3.5^2 và 5^2.7\)
b) \(2^2.3.5; 3^2.7\) và \(3.5.11\)
a) \(3.5^2 \) và \(5^2.7\)
+) Thừa số nguyên tố chung là 5 và thừa số nguyên tố riêng là 3 và 7
Advertisements (Quảng cáo)
+) Số mũ nhỏ nhất của 5 là 2 nên ƯCLN cần tìm là \(5^2 = 25\)
+) Số mũ lớn nhất của 3 là 1, số mũ lớn nhất của 5 là 2, số mũ lớn nhất của 7 là 1 nên BCNN cần tìm là \(3.5^2.7=525\)
Vậy ƯCLN cần tìm là 25; BCNN cần tìm là 525.
b) \(2^2.3.5; 3^2.7\) và \(3.5.11\)
+) Thừa số nguyên tố chung là 3 và thừa số nguyên tố riêng là 2; 5; 7; 11
+) Số mũ nhỏ nhất của 3 là 1 nên ƯCLN cần tìm là 3
+) Số mũ lớn nhất của 2 là 2, số mũ lớn nhất của 3 là 2, số mũ lớn nhất của 5 là 1, số mũ lớn nhất của 7 là 1, số mũ lớn nhất của 11 là 1 nên BCNN cần tìm là \(2^2. 3^2. 5. 7.11=13 860\)
Vậy ƯCLN cần tìm là 3; BCNN cần tìm là 13 860.
Bài 2.47 SGK Toán 6 Kết nối tri thức
Các phân số sau đã tối giản chưa? Nếu chưa, hãy rút gọn về phân số tối giản
a) \(\frac{15}{17}\)
b) \(\frac{70}{105}\)
a) \(\frac{15}{17}\)
Vì ƯCLN(15,17)=1 nên phân số \(\frac{15}{17} đã tối giản
b) \(\frac{70}{105}\)
Ta có: 70 = 2.7.5; 105= 3.5.7
+) Thừa số nguyên tố chung là 5 và 7
+) Số mũ nhỏ nhất của 5 là 1, số mũ nhỏ nhất của 7 là 1 nên \(ƯCLN(70, 105) = 35 \ne 1\) nên phân số chưa tối giản.
\(\frac{70}{105}=\frac{70:35}{105:35}=\frac{2}{3}\)
Ta thấy ƯCLN(2;3)=1 nên \(\frac{70}{105}\) đã rút gọn về \(\frac{2}{3}\) tối giản
Bài 2.48 trang 55 SGK Toán 6 KNTT
Hai vận động viên chạy xung quanh một sân vận động. Hai vận động viên xuất phát tại cùng một thời điểm, cùng vị trí và chạy cùng chiều. Vận động viên thứ nhất chạy một vòng sân hết 360 giây, vận động viên thứ hai chạy một vòng sân mất 420 giây. Hỏi sau bao nhiêu phút họ lại gặp nhau, biết tốc độ di chuyển của họ không đổi?
Advertisements (Quảng cáo)
Đổi 360 giây = 6 phút, 420 giây = 7 phút
Giả sử họ lại gặp nhau sau x(phút).
Vận động viên thứ nhất chạy một vòng sân hết 6 phút nên x là bội của 6.
Vận động viên thứ hai chạy một vòng sân hết 7 phút nên x là bội của 7.
Nên x ∈ BC(6; 7).
Mà x ít nhất nên x = BCNN(6; 7).
Ta có: 6 = 2.3; 7 = 7
x = BCNN(6; 7) = 2.3.7 = 42
Vậy sau 42 phút họ lại gặp nhau.
Bài 2.49 Toán 6 trang 55
Quy đồng mẫu các phân số sau:
a) \(\frac{4}{9}\)và \(\frac{7}{15}\);
b) \(\frac{5}{12}; \frac{7}{15}\) và \(\frac{4}{27}\)
a) \(\frac{4}{9}\)và \(\frac{7}{15}\)
Ta có: 9 =32; 15 =3.5 nên BCNN(9, 15) = 32.5 = 45. Do đó ta có thể chọn mẫu chung là 45.
\(\frac{4}{9}=\frac{4.5}{9.5}=\frac{20}{45}\)
\(\frac{7}{15}=\frac{7.3}{15.3}=\frac{21}{45}\)
b) \(\frac{5}{12}; \frac{7}{15}\) và \(\frac{4}{27}\)
Ta có: \(12=2^2.3\); \(15 = 3.5\) ; \(27=3^3\) nên BCNN(12, 15, 27) =\(2^2.3^3.5=540\). Do đó ta có thể chọn mẫu chung là 540.
\(\frac{5}{12}=\frac{5.45}{12.45}=\frac{225}{540}\)
\(\frac{7}{15}=\frac{7.36}{15.36}=\frac{252}{540}\)
\(\frac{4}{27}=\frac{4.20}{27.20}=\frac{80}{540}\)
Giải bài 2.50 Toán 6 tập 1
Từ ba tấm gỗ có độ dài 56 dm, 48 dm và 40 dm, bác thợ mộc muốn cắt thành các thanh gỗ có độ dài như nhau mà không để thừa mẩu gỗ nào. Hỏi bác cắt như thế nào để được các thanh gỗ có độ dài lớn nhất có thể?
Các thanh gỗ có độ dài lớn nhất được cắt ra là ƯCLN(56; 48; 40)
Ta có: \(56=2^3.7\)
\(48 = 2^3. 3\)
\(40=2^5.5\)
Ta thấy thừa số nguyên tố chung là 2 và có số mũ nhỏ nhất là 3
Do đó \(ƯCLN(56, 48, 40) =2^3\)
Vậy chiều dài các thanh gỗ lớn nhất có thể cắt là 8 dm.
Bài 2.51 trang 55 SGK Toán 6 t1
Học sinh lớp 6A khi xếp thành hàng 2, hàng 3, hàng 7 đều vừa đủ hàng. Hỏi số học sinh lớp 6A là bao nhiêu, biết rằng số học sinh nhỏ hơn 45.
Học sinh lớp 6A khi xếp thành hàng 2, hàng 3, hàng 7 đều vừa đủ hàng nên số học sinh lớp 6A là BC(2, 3, 7)
BCNN(2, 3, 7) = 2.3.7 = 42 nên BC(2, 3, 7) = B(42) = {0; 42; 84, …}
Mà số học sinh nhỏ hơn 45 nên số học sinh lớp 6A là 42.
Vậy số học sinh lớp 6A là 42 học sinh.
Giải Bài 2.52 Toán 6
Hai số có BCNN là \(2^3.3.5^3\) và ƯCLN là \(2^2.5\). Biết một trong hai số bằng \(2^2.3.5\), tìm số còn lại.
Sử dụng kết luận ở bài tập 2.45, ta có tích của BCNN và ƯCLN của hai số tự nhiên bất kì thì bằng tích của hai số đó.
Gọi số cần tìm là \(x.\)
Tích của hai số đã cho là \(x.2^2.3.5\)
Tích của BCNN và ƯCLN của hai số đã cho là:
\(2^3.3.5^3.2^2.5=2^5.3.5^4\)
Áp dụng kết luận ở bài tập 2.45, ta có tích của BCNN và ƯCLN của hai số tự nhiên bất kì thì bằng tích của hai số đó.
Do đó: \(x.2^2.3.5\)=\(2^5.3.5^4\)
\(x=\frac{2^5.3.5^4}{2^2.3.5}\)
\(x= 2^3.5^3\)
Vậy \(x= 2^3.5^3\)