Trang Chủ Sách bài tập lớp 10 SBT Vật Lý 10

Bài VII.8, VII.9, VII.10 trang 94 SBT Vật Lý 10: Hỏi phải treo vật nặng P tại vị trí nào trên thanh BD để thanh này luôn nằm ngang ?

Bài Ôn tập chương VII SBT Lý lớp 10. Giải bài VII.8, VII.9, VII.10 trang 94 Sách bài tập Vật lí 10. Câu VII.8: Xác định lượng nhiệt cần cung cấp để biến đổi 6,0 kg nước đá ở – 200C thành hơi nước ở 1000C…

Bài VII.8: Xác định lượng nhiệt cần cung cấp để biến đổi 6,0 kg nước đá ở – 200C thành hơi nước ở 1000C. Cho biết nước đá có nhiệt dung riêng là 2090 J/kg.K và nhiệt nóng chảy riêng là 3,4.105 J/kg, nước có nhiệt dung riêng là 4180 J/kg.K và nhiệt hóa hơi riêng là 2,3.106 J/kg. Bỏ qua sự mất mát nhiệt do bình chứa hấp thụ và do truyền ra bên ngoài.

Lượng nhiệt cần cung cấp để biến đổi m = 6,0 kg nước đá ở nhiệt độ t1 = -20°C biến thành hơi nước ở t2 = 100°C có giá trị bằng :

Q = Q1 + Q2 + Q3 + Q4

trong đó lượng nhiệt Q1 = c1m(t0 – t1) cung cấp cho m (kg) nước đá có

nhiệt dung riêng cđ để nhiệt độ của nó tăng từ t1 = -20°C đến t0 = 0°C ; lượng

nhiệt Q0 = λm cung cấp cho m (kg) nước đá có nhiệt nóng chảy riêng λ ở

t0 = 0°C tan thành nước ở cùng nhiệt độ ; lượng nhiệt Q2= c0m(t2 -t0)

cung cấp cho m (kg) nước có nhiệt dung riêng cn để nhiệt độ của nó tăng từ t0 = 0°C đến t2 = 100°C ; lượng nhiệt Q3 = Lm cung cấp cho m (kg) nước

có nhiệt hoá hơi riêng L ở t2 = 100°C biến thành hơi nước ở cùng nhiệt độ. Như vậy, ta có thể viết:

Q = cđm(t0 – t1) + λm + cnm(t2 -t0) + Lm

Advertisements (Quảng cáo)

hay Q = m[cđ(t0 – t1) + λ + cn(t2 -t0) + L]

Thay số, ta tìm được :

Q = 6,0. [2090.(0 + 20) + 3,4.105 + 4180.(100-0) + 2,3.106]

Q ≈ 186.106 J.

Bài VII.9: Một đám mây thể tích 2,0.1010 m3 chứa hơi nước bão hòa trong khí quyển ở nhiệt độ 200C. Khi nhiệt độ của đám mây giảm xuống tới 100C, hơi nước bão hòa trong đám mây tụ lại thành các hạt mưa. Xác định khối lượng nước mưa rơi xuống. Cho biết khối lượng riêng của hơi nước bão hòa trong không khí ở 100C là 9,40 g/m3 và ở 200C là 17,30 g/m3.

Advertisements (Quảng cáo)

 Vì độ ẩm cực đại A20 của không khí ở 200C có giá trị bằng khối lượng riêng của hơi nước bão hoà ở cùng nhiệt độ, nên ta có : A20 = 17,30 g/m3.

và suy ra lượng hơi nước cực đại có trong thể tích V = 2,0.1010  m3 của đám mây :

M20 = A20V = 17,30.10-3.2,0.1010 = 3,46.108 kg

Khi nhiệt độ không khí của đám mây giảm xuống tới 10°C thì lượng hơi nước cực đại có trong thể tích V = 2,0.1010 m3 của đám mây chỉ còn bằng :

M10 = A10V = 9,40.10-3.2,0.1010 = l,88.108 kg. Như vậy khối lượng nước mưa rơi xuống bằng :

M = M20 – M10 = 3,46.108– l,88.108 = 1,58.108 kg = 158.103 tấn.

Bài VII.10*: Một sợi dây thép AB và một sợi dây đồng CD có độ dài và tiết diện giống nhau. Đầu trên của mỗi dây được treo cố định vào giá đỡ tại hai điểm A và C, đầu dưới của chúng được buộc vào hai đầu B và D của một thanh rắn nằm ngang dài 0,80 m (Hình VII). Hỏi phải treo vật nặng P tại vị trí nào trên thanh BD để thanh này luôn nằm ngang ? Cho biết suất đàn hồi của thép là E1 = 19,6.1010 Pa, của đồng là E2 = 11,7.1010Pa. Giả thiết thành rắn BD không bị biến dạng.

Giả sử vật nặng được treo tại vị trí cách đầu B của thanh rắn một đoạn x. Khi đó ta có thể phân tích trọng lực \(\overrightarrow P \) tác dụng lên vật nặng thành hai lực thành phần  \(\overrightarrow F_1 \)  và  \(\overrightarrow F_2 \)  song song với . Lực  tác dụng lên sợi dây thép tại điểm B và làm sợi dây thép dãn dài thêm một đoạn Δl1, lực \(\overrightarrow F_2 \) tác dụng lên sợi dây đồng tại điểm D và làm sợi dây đồng dãn dài thêm một đoạn Δl2. Vì sợi dây thép và sợi dây đồng có độ dài ban đầu l0 và tiết diện S giống nhau, nên theo định luật Húc, ta có :

\({F_1} = {E_1}{S \over {{l_0}}}\Delta {l_1}\) và \({F_2} = {E_2}{S \over {{l_0}}}\Delta {l_2}\)

Muốn thanh rắn BD nằm ngang thì sợi dây thép và sợi dây đồng phải có độ dãn dài bằng nhau:  Δl1 = Δl2. Thay điều kiện này vào F1 và F2 , ta được :

\({{{F_1}} \over {{F_2}}} = {{{E_1}} \over {{E_2}}}\)

Mặt khác theo quy tắc tổng hợp hai lực song song cùng chiều, ta có :

\({{{F_1}} \over {{F_2}}} = {{a – x} \over a}\)

Từ đó, ta suy ra :  \(x = {{{E_2}a} \over {{E_1} + {E_2}}} = {{11,{{7.10}^{10}}.0,80} \over {19,{{6.10}^{10}} + 11,{{7.10}^{10}}}} \approx 30\left( {cm} \right)\)

Advertisements (Quảng cáo)