Trang Chủ Lớp 9 Đề kiểm tra 15 phút lớp 9

Kiểm tra môn Toán lớp 9 15 phút Chương 1 Đại số: Rút gọn A = √(a/b) + √(ab) + (a/b).√(b/a)

CHIA SẺ
So sánh : \({{2 + \sqrt 2 } \over {2 – \sqrt 2 }} + {{2 – \sqrt 2 } \over {2 + \sqrt 2 }}\,\text{ và }\,4\sqrt 2 \); Rút gọn :  \(A = \sqrt {{a \over b}}  + \sqrt {ab}  + {a \over b}\sqrt {{b \over a}} \) … trong Kiểm tra môn Toán lớp 9 15 phút Chương 1 Đại số. Xem Đề và đáp án đầy đủ phía dưới đây

Bài 1. Rút gọn :  \(A = \sqrt {{a \over b}}  + \sqrt {ab}  + {a \over b}\sqrt {{b \over a}} \)

Bài 2. Tìm x, biết : \({{4 – x} \over {\sqrt x  + 2}} – {{x – 4\sqrt x  + 4} \over {\sqrt x  – 2}} < 4\,\,\,\,\,\left( * \right)\)

Bài 3. So sánh : \({{2 + \sqrt 2 } \over {2 – \sqrt 2 }} + {{2 – \sqrt 2 } \over {2 + \sqrt 2 }}\,\text{ và }\,4\sqrt 2 \)

Bài 4. Chứng minh rằng : \({{a – b} \over {{b^2}}}.\sqrt {{{{a^2}{b^4}} \over {{a^2} – 2ab + {b^2}}}}  = \left| a \right|\)     (với \(a > b\) )


Bài 1. Điều kiện : \(ab > 0\). Khi đó, ta có:

\(A = {{\sqrt {ab} } \over {\left| b \right|}} + \sqrt {ab}  + {a \over {\left| a \right|b}}\sqrt {ab} \)\( = \sqrt {ab} \left( {{1 \over {\left| b \right|}} + 1 + {a \over {\left| a \right|b}}} \right)\)

Nếu \(a > 0\) và \(b > 0\), ta có: \(A = \sqrt {ab} \left( {{2 \over b} + 1} \right)\)

Nếu \(a < 0\) và \(b < 0\), ta có: \(A = \sqrt {ab} \left( {1 – {2 \over b}} \right)\)

Bài 2. Điều kiện : \(\left\{ {\matrix{   {x \ne 4}  \cr   {x \ge 0}  \cr  } .} \right.\) Khi đó :

\(\left( * \right) \Leftrightarrow  – \left( {\sqrt x  – 2} \right) – \left( {\sqrt x  – 2} \right) < 4\)

\(\Leftrightarrow \sqrt x  > 0 \Leftrightarrow x > 0\)

Vậy : \(x > 0\) và \(x ≠ 4\).

Bài 3. Ta có:

\(\eqalign{  & {{2 + \sqrt 2 } \over {2 – \sqrt 2 }} + {{2 – \sqrt 2 } \over {2 + \sqrt 2 }} \cr&= {{{{\left( {2 + \sqrt 2 } \right)}^2}} \over {4 – 2}} + {{{{\left( {2 – \sqrt 2 } \right)}^2}} \over {4 – 2}}  \cr  &  = {{4 + 4\sqrt 2  + 2 + 4 – 4\sqrt 2  + 2} \over 2}\cr& = 6 > 4\sqrt 2  \cr} \)

(Vì \(6 > 4\sqrt 2  \Leftrightarrow 36 > {\left( {4\sqrt 2 } \right)^2} \Leftrightarrow 36 > 32\)  luôn đúng)

Bài 4. Biến đổi vế trái, ta được :

\(VT = {{a – b} \over {{b^2}}}\sqrt {{{{a^2}{b^4}} \over {{{\left( {a – b} \right)}^2}}}}  = {{a – b} \over {{b^2}}}\left| a \right|.{b^2}.{1 \over {\left| {a – b} \right|}}\)

Vì \(a > b ⇒ a – b > 0 ⇒ | a – b | = a – b\).

Vậy: \(VT = | a | = VP\) (đpcm).