Trang Chủ Lớp 9 Đề kiểm tra 15 phút lớp 9

Kiểm tra môn Toán 15 phút Chương 3 Hình học 9: Chứng minh rằng AB.AC = AD.AE

CHIA SẺ
Cho ∆ABC nội tiếp đường tròn (O). Tia phân giác của góc A cắt BC ở D và cắt đường tròn ở E. Chứng minh rằng \(AB . AC = AD . AE\) … trong Kiểm tra môn Toán 15 phút Chương 3 Hình học 9. Xem Đề và đáp án đầy đủ phía dưới đây

Cho ∆ABC nội tiếp đường tròn (O). Tia phân giác của góc A cắt BC ở D và cắt đường tròn ở E. Chứng minh rằng:

a) \(AB . AC = AD . AE\)

b) \(B{E^2} = AE.DE.\)


a) Ta có AE là phân giác của góc A nên:

\(\widehat {BAE} = \widehat {CAE}\) \(\Rightarrow \) cung BE = cung CE

Lạicó: \(\widehat {ABC} = \widehat {AEC}\) ( góc nội tiếp cùng chắn cung AC)

Do đó ∆ABD đồng dạng với ∆AEC (g.g)

\(\Rightarrow\dfrac{{AB} }{ {AE}} = \dfrac{{AD} }{{AC}}\) \(\Rightarrow AB . AC = AD . AE\).

b) Xét ∆ABE và ∆BDE có :

+) \(\widehat {AEB}\) chung

+) \(\widehat {BAE} = \widehat {EBC}\) ( góc nội tiếp cùng chắn hai cung bằng nhau, cung BE = cung CE)

Do đó ∆ABE đồng dạng với ∆BDE (g.g)

\(\Rightarrow \dfrac{{BE} }{ {DE}} = \dfrac{{AE} }{ {BE}} \Rightarrow B{E^2} = AE.DE\).